
Link for Cadence® Incisive® 2
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Link for Cadence Incisive User’s Guide
© COPYRIGHT 2006–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Cadence, Incisive, and the Cadence logo are either trademarks or registered trademarks of
Cadence Design Systems, Inc. in the United States and/or other jurisdictions. Cadence’s
trademarks are used by The MathWorks, Inc. under license.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2006 Online only New for Version 1 (Release 2006b+)
March 2007 Online only Updated for Version 2.0 (Release 2007a)

Contents

Getting Started

1
What Is the Link for Cadence Incisive Software? 1-2

Typical Applications . 1-3
Expected Users . 1-4
Key Features . 1-5
The Cosimulation Environment . 1-7
Modes of Communication . 1-9
Working with MATLAB and the HDL Simulator 1-10
Working with Simulink and the HDL Simulator 1-11

Installation and Setup . 1-13
What Are Your Environment Requirements? 1-13
Deciding on a Configuration . 1-15
Identifying a Server in a Network Configuration 1-17
Choosing TCP/IP Socket Ports . 1-18
Checking Product Requirements . 1-20
Installing Related Application Software 1-22
Installing the Link for Cadence Incisive Software 1-23
Setting Up the HDL Simulator for Use with the Link for

Cadence Incisive Software . 1-23

Getting Help with the Link for Cadence Incisive
Software . 1-27
Documentation Overview . 1-27
Online Help . 1-28
Demos and Tutorials . 1-28

Coding a Link for Cadence Incisive MATLAB
Application

2
Overview . 2-2

v

Coding Entities or Modules for MATLAB Verification . . 2-3
Overview of Steps for Coding Entities or Modules 2-3
Choosing an Entity or Module Name 2-4
Specifying Port/Signal and Module Paths 2-4
Specifying Ports for the Entity or Module 2-6
Specifying Port Direction Modes . 2-6
Specifying Port Data Types . 2-6
Sample VHDL Entity Definition . 2-8

Compiling the HDL Model . 2-9

Coding a MATLAB Test Bench Function 2-10
Overview of the Steps for Coding a MATLAB Test Bench

Function . 2-10
Data Type Conversions . 2-11
Naming a MATLAB Test Bench Function 2-15
Passing Parameters to and from the MATLAB Function . . 2-16
Gaining Access to and Applying Port Information 2-17
Converting Data for Manipulation . 2-20
Converting Data for Return to the HDL Simulator 2-21
Sample MATLAB Test Bench Function 2-26

Coding a MATLAB Component Function 2-33
Function Definition and Parameters 2-33

Placing a MATLAB Test Bench or Component Function
on the MATLAB Search Path . 2-35

Starting and Controlling MATLAB Link Sessions

3
Overview . 3-3

Checking the MATLAB Server’s Link Status 3-5

Starting the MATLAB Server . 3-7

vi Contents

Starting the HDL Simulator for Use with MATLAB . . . 3-10

Deciding on MATLAB Link Session Scheduling
Options . 3-11

Controlling Callback Timing from a MATLAB Test
Bench or Component Function 3-12

Initializing the HDL Simulator for a MATLAB Link
Session . 3-13

Applying Stimuli with the HDL Simulator force
Command . 3-18

Running and Monitoring a MATLAB Link Session 3-20

Stopping a MATLAB Link Session 3-22

Modeling and Verifying an HDL Design with
Simulink

4
Overview . 4-3

Creating a Hardware Model Design in Simulink 4-5

Handling Signal Values Across Simulators 4-7
How Simulink Drives Cosimulation Signals 4-7
Representation of Simulation Time 4-8
Handling Multirate Signals . 4-15
Clock Signal Latency . 4-16
Block Simulation Latency . 4-16

Configuring Simulink for HDL Models 4-18

vii

Adding the HDL Representation of a Model Component
into a Simulink Model . 4-19

Configuring an HDL Cosimulation Block 4-20
What Are Your HDL Cosimulation Block Requirements? . . 4-20
Opening the Block Parameters Dialog Box 4-23
Mapping HDL Signals to Block Ports 4-23
Specifying Data Types for Output Ports 4-28
Configuring the Simulink and Incisive Simulator Timing

Relationship . 4-30
Configuring the Communication Link 4-32
Creating Optional Clocks . 4-34
Executing Tcl Commands Before and After

Cosimulation . 4-37
Applying Your Block Parameters Configuration Settings . . 4-40

Running and Testing a Cosimulation Model in
Simulink . 4-41

Using Frame-Based Processing in Cosimulation 4-42
Overview . 4-42
Using Frame-Based Processing . 4-42

Using a Value Change Dump File for Design
Verification . 4-44
Generating a VCD File . 4-44
VCD File Format . 4-47

viii Contents

MATLAB Functions — Alphabetical List

5

HDL Simulator Tcl Commands — Alphabetical
List

6

Simulink Blocks — Alphabetical List

7

Index

ix

x Contents

1

Getting Started

What Is the Link for Cadence
Incisive Software? (p. 1-2)

Identifies typical applications and
expected users, lists key product
features, describes the Link for
Cadence Incisive cosimulation
environment, and provides an
overview of how you work with the
integrated tool environment.

Installation and Setup (p. 1-13) Explains how to install and set up
Link for Cadence Incisive software.

Getting Help with the Link for
Cadence Incisive Software (p. 1-27)

Identifies and explains how to gain
access to available documentation
online help, demo, and tutorial
resources.

1 Getting Started

What Is the Link for Cadence Incisive Software?
The Link for Cadence® Incisive® cosimulation interface is software
that integrates MathWorks tools into the Electronic Design Automation
(EDA) workflow for application-specific integrated circuit (ASIC) and field
programmable gate array (FPGA) development. The interface provides a fast
bidirectional link between the Cadence Design System’s hardware description
language (HDL) simulators (Incisive® simulators) and the MathWorks
products MATLAB® and Simulink® for direct hardware design verification
and cosimulation. The integration of these tools allows users to apply each
product to the tasks it does best:

• Incisive simulator — Hardware modeling in HDL and simulation

• MATLAB — Numerical computing, algorithm development, and
visualization

• Simulink — Simulation of system-level designs and complex models

Link for Cadence Incisive software consists of MATLAB functions and the
HDL simulator commands for establishing the communication links between
the Incisive simulator and MathWorks products. In addition, a library of
Simulink blocks is available for including Incisive simulator HDL designs in
Simulink models for cosimulation.

The following sections discuss

• “Typical Applications” on page 1-3

• “Expected Users” on page 1-4

• “Key Features” on page 1-5

• “The Cosimulation Environment” on page 1-7

• “Modes of Communication” on page 1-9

• “Working with MATLAB and the HDL Simulator” on page 1-10

• “Working with Simulink and the HDL Simulator” on page 1-11

1-2

What Is the Link for Cadence Incisive Software?

Typical Applications
Link for Cadence Incisive software streamlines FPGA and ASIC development
by integrating tools available for

1 Developing specifications for hardware design reference models

2 Implementing a hardware design in HDL, based on a reference model

3 Verifying the design against the reference design

The following figure shows how the HDL simulator and MathWorks products
fit into this hardware design scenario.

���������	
����

�

�

��������	���������

������	
����

����	���	��
����
	��������	��������

�
�������	�������������

�����
�����	!��������	����"�#
$�����	�����	����"�#

��������������	����"�#
��������

�����	!��������		 �������
��������	$�#�
	!����

��������������	 �������

As the figure shows, Link for Cadence Incisive software connects tools that
are traditionally used discretely to accomplish specific steps in the design
process. By connecting the tools, Link for Cadence Incisive software simplifies
verification by allowing you to cosimulate the implementation and original
specification directly. The end result is significant time savings and the
elimination of errors inherent to manual comparison and inspection.

In addition to the preceding design scenario, Link for Cadence Incisive
software enables you to use

1-3

1 Getting Started

• MATLAB or Simulink to create test signals and software test benches for
HDL code

• MATLAB or Simulink to provide a behavioral model for an HDL simulation

• MATLAB analysis and visualization capabilities for real-time insight into
an HDL implementation

• Simulink to translate legacy HDL descriptions into system-level views

Expected Users
Link for Cadence Incisive software is for hardware engineers who design,
implement, or verify FPGAs and ASICs. A typical user might be responsible
for any or all of the following:

• Create hardware reference specifications, using MATLAB or Simulink

• Develop implementations of the specifications in HDL, using Incisive
simulators

• Verify the implementation by comparing its results to those of the original
specification

Link for Cadence Incisive software enables engineers to cosimulate and verify
a design directly between the specification and implementation, eliminating
the need for manual comparisons. Link for Cadence Incisive software
also allows designers to pass on MATLAB and Simulink specifications to
implementation and verification teams, without having to first rewrite the
design in HDL.

The documentation provided with Link for Cadence Incisive software assumes
users have a moderate level of prerequisite knowledge in the following subject
areas:

• Hardware design and system integration

• VHDL and/or Verilog

• Incisive simulators from Cadence Design Systems, Inc.

• MATLAB

1-4

What Is the Link for Cadence Incisive Software?

Experience with Simulink and Simulink Fixed Point is required for applying
the Simulink component of the product.

Depending on your application, experience with the following MATLAB
toolboxes and Simulink blocksets is also useful:

• Signal Processing Toolbox

• Filter Design Toolbox

• Communications Toolbox

• Signal Processing Blockset

• Communications Blockset

• Video and Image Processing Blockset

Key Features
Key features of Link for Cadence Incisive software include

• Ability to link the HDL simulator to MATLAB and Simulink for
bidirectional cosimulation, verification, and visualization

• Support for Window and Unix platforms (see the MathWorks Link
for Cadence Incisive product requirements page for specific platforms
supported)

• Full Verilog and Native VHDL support

• MATLAB testbench capability, giving the ability to use MATLAB code
to stimulate and check HDL code

• MATLAB component capability, enabling simulation of MATLAB code in
place of HDL

• Frame-based simulation, providing accelerated verification (with the
Signal Processing Blockset, available separately)

• User-selectable communication modes between MATLAB and Simulink and
the Incisive simulator, providing shared memory (for faster performance)
and TCP/IP sockets (for versatility)

• A Simulink block for cosimulating HDL models (VHDL or Verilog) in
Simulink

1-5

http://www.mathworks.com/products/incisive/requirements.html

1 Getting Started

• A Simulink block for exporting test vectors and results as value change
dump (VCD) files

• Multiple simulation options from one Simulink model, including connection
of multiple Simulink HDL cosimulation blocks to one or more Incisive
simulators

• Interactive or batch mode cosimulation, debugging, testing, and verification
of HDL code from within MATLAB

• Multiple simulation options from MATLAB, including connection of
multiple MATLAB components or test benches to one or more MATLAB
servers

VHDL and Verilog Language Support
All Link for Cadence Incisive MATLAB functions and the HDL Cosimulation
block offer the same language-transparent feature set for both Verilog and
VHDL models.

Link for Cadence Incisive software also supports mixed-language HDL models
(models with both Verilog and VHDL components), allowing you to cosimulate
VHDL and Verilog signals simultaneously. However, only Simulink can access
components in different languages at any level; MATLAB can access signals
only with the language of the top-level module instance or component.

Mixed-Language Model Limitation. The Cadence VHPI reports the
incorrect simulator precision when simulating mixed Verilog/VHDL design.
(It is correct when in a pure VHDL design.) In a mixed-HDL model, the VHPI
always returns a precision of 1 fs. The actual simulator precision is properly
modified by -vhdl_time_precision, but the returned value does not reflect
that value in a mixed-HDL model.

You will get incorrect or non-running simulations if both the following
conditions exist:

• You have a mixture of VHDL and Verilog in your design AND you have set
-vhdl_time_precision to TP and TP != 1fs

• You also are cosimulating either of the following:

- Only VHDL signals and there is a Simulink sample time finer than TP
(after accounting for the cosimulation block timescale calculations)

1-6

What Is the Link for Cadence Incisive Software?

- Both VHDL and Verilog signals and TP is coarser than the Verilog
time precision set by timescale or the -timescale command line and
there is a Simulink sample time finer than TP (after accounting for the
cosimulation block timescale calculations)

The Cosimulation Environment
Link for Cadence Incisive software is a client/server test bench and
cosimulation application. The role that the HDL simulator plays in a Link
for Cadence Incisive simulation environment depends on whether the HDL
simulator links to MATLAB or Simulink.

MATLAB and HDL Simulator Links
When linked with MATLAB, the HDL simulator functions as the client, as
the following figure shows.

�����
������

��������
���������
������

����

%��

%��

��

��

&�'����

&�������

In this scenario, a MATLAB server function waits for service requests that it
receives from an Incisive simulation session. After receiving a request, the
server establishes a communication link and invokes a specified MATLAB
function wrapper that computes data for, verifies, or visualizes the HDL
model (VHDL or Verilog) that is under simulation in the Incisive simulator.

Note You cannot initiate Link for Cadence Incisive communication between
MATLAB and the HDL simulator from MATLAB. The MATLAB server simply
responds to function call requests that it receives from the HDL simulator.

The following figure shows how a MATLAB function wraps around and
communicates with the HDL simulator during a test bench simulation session.

1-7

1 Getting Started

(��)�����

%*�

����	 ���+��	�,$�������

�����
��������

%�����
��������

�������� &�������

�����

��������	���������

�-

The MATLAB server can service multiple simultaneous HDL simulator
sessions and HDL models. However, you should follow recommended
guidelines to ensure the server can track the I/O associated with each model
and session. The following figure shows a multiple-client scenario connecting
to the server at TCP/IP socket port 4449.

��������
���������
������

����

����
!���
.../

�����
������

��������
���������
������

Simulink and HDL Simulator Links
When linked with Simulink, the HDL simulator functions as the server, as
shown in the following figure.

��������
������

��������
���������
������ %��

%����

��

����
&�'����

&�������

1-8

What Is the Link for Cadence Incisive Software?

In this case, the HDL simulator responds to simulation requests it receives
from cosimulation blocks in a Simulink model. You initiate a cosimulation
session from Simulink. After a session is started, you can use Simulink and
the HDL simulator to monitor simulation progress and results. For example,
you might add signals to an Incisive simulator Wave window to monitor
simulation timing diagrams.

As the following figure shows, multiple cosimulation blocks in a Simulink
model can request the service of multiple instances of the HDL simulator,
using unique TCP/IP socket ports.

��������
���������
������

����

����

��������
������

!���
.../

!���
...0��������

���������
������

Modes of Communication
The mode of communication that the Link for Cadence Incisive software uses
for a connection between the HDL simulator and MATLAB or Simulink
somewhat depends on whether your simulation application runs in a local,
single-system configuration or in a network configuration. If the HDL
simulator and the MathWorks products can run locally on the same system
and your application requires only one communication channel, you have the
option of choosing between shared memory and TCP/IP socket communication.
Shared memory communication provides optimal performance and is the
default mode of communication.

TCP/IP socket mode is more versatile. You can use it for single-system and
network configurations. This option offers the greatest scalability.

For configurations in which the HDL simulator and the MathWorks products
reside on different systems, each system must be configured for the Ethernet
and you must use TCP/IP socket communication.

1-9

1 Getting Started

Working with MATLAB and the HDL Simulator
When linked with MATLAB, the HDL simulator functions as the client,
initiating requests of MATLAB that focus on numerical computing, algorithm
development, and visualization. The MATLAB server, which you start with a
supplied MATLAB function, waits for connection requests from instances of
the HDL simulator running on the same or different computers. When the
server receives a request, it executes a specified wrapper MATLAB function
you have coded to perform tasks on behalf of a component in your HDL design.
Parameters that you specify when you start the server indicate whether the
server establishes shared memory or TCP/IP socket communication links.

After the server is running, you can start and configure the HDL simulator
for use with MATLAB with a supplied Link for Cadence Incisive function.
Optional parameters allow you to specify

• Tool Command Language (Tcl) commands that execute as part of startup

• A specific HDL simulator executable to start

• The name of an HDL simulator Tcl script file to store the complete startup
script for future use or reference

For more on configuring the HDL simulator for use with the Link for Cadence
Incisive software, see “Setting Up the HDL Simulator for Use with the Link
for Cadence Incisive Software” on page 1-23.

When you initiate a specific MATLAB link session, you specify parameters
that identify

• The mode and, if appropriate, TCP/IP data necessary for connecting to a
MATLAB server

• The wrapper MATLAB function that attaches to and executes on behalf of
the HDL model

• Timing specifications and other control data that specifies when the model’s
MATLAB function is to be called

The MATLAB server can service multiple simultaneous HDL simulator
designs and clients. For more about initiating MATLAB link sessions, see
Chapter 3, “Starting and Controlling MATLAB Link Sessions”.

1-10

What Is the Link for Cadence Incisive Software?

Working with Simulink and the HDL Simulator
When linked with Simulink, the HDL simulator functions as the server.
Using the Link for Cadence Incisive communications interface, an HDL
Cosimulation block cosimulates a hardware component by applying input
signals to and reading output signals from an HDL model under simulation in
the HDL simulator. Multiple HDL Cosimulation blocks in a Simulink model
can request the service of multiple instances of the HDL simulator, using
unique TCP/IP socket ports.

Using the Block Parameters dialog box for an HDL Cosimulation block, you
can configure

• Block input and output ports that correspond to signals (including internal
signals) of an HDL model. You can specify sample times and fixed-point
data types for individual block output ports if desired.

• Type of communication and communication settings used for exchanging
data between the simulation tools.

• Rising-edge or falling-edge clocks to apply to your model. The period of
each clock is individually specifiable.

• Tcl commands to run before and after the simulation.

Using the Link for Cadence Incisive MATLAB function nclaunch, you can
start and configure the HDL simulator with optional parameters that allow
you to specify the same behavior as when you configure the simulator for
MATLAB (see “Working with MATLAB and the HDL Simulator” on page
1-10). In addition, you can specify the default mode of communication to
be used for the link and, if appropriate, a TCP/IP socket port. For more on
configuring the HDL simulator for use with the Link for Cadence Incisive
software, see “Setting Up the HDL Simulator for Use with the Link for
Cadence Incisive Software” on page 1-23.

Link for Cadence Incisive software equips the HDL simulator with a set of
Link for Cadence Incisive command extensions. Using one of those commands,
you execute the HDL simulator with an instance of an HDL model for
cosimulation with Simulink. After the model is loaded, you can start the
cosimulation session from Simulink.

1-11

1 Getting Started

Link for Cadence Incisive software also includes a block for generating value
change dump (VCD) files. You can use VCD files generated with this block

• To view Simulink simulation waveforms in your HDL simulation
environment

• To compare results of multiple simulation runs, using the same or different
simulation environments

• As input to post-simulation analysis tools

1-12

Installation and Setup

Installation and Setup
This section helps you to define your Link for Cadence Incisive application
environment. Topics include

• “What Are Your Environment Requirements?” on page 1-13

• “Deciding on a Configuration” on page 1-15

• “Identifying a Server in a Network Configuration” on page 1-17

• “Choosing TCP/IP Socket Ports” on page 1-18

• “Checking Product Requirements” on page 1-20

• “Installing Related Application Software” on page 1-22

• “Installing the Link for Cadence Incisive Software” on page 1-23

• “Setting Up the HDL Simulator for Use with the Link for Cadence Incisive
Software” on page 1-23

What Are Your Environment Requirements?
As part of the installation and setup process, review the following checklist
to identify environment requirements that pertain to your Link for
Cadence Incisive application. Questions to ask yourself about configuration
requirements are in the first column of the table; go to the topic listed in the
second column for information on how to address the requirement.

Environment Requirements Checklist

Requirement For More Information, See...

Configurations

Will your application use multiple communication
links?

“Deciding on a Configuration” on
page 1-15

How many instances of the MATLAB server are
required?

“Deciding on a Configuration” on
page 1-15

1-13

1 Getting Started

Environment Requirements Checklist (Continued)

Requirement For More Information, See...

Will a MATLAB server be handling multiple HDL
simulator client connections? If so, how many? Will
they be from the same or different HDL simulator
sessions?

“Deciding on a Configuration” on
page 1-15

How many MATLAB functions do you need to write to
model your HDL implementation?

“Deciding on a Configuration” on
page 1-15

If your application will be using Simulink, how many
cosimulation blocks are needed? Will the blocks be
connecting to the same or different HDL simulator
sessions?

“Deciding on a Configuration” on
page 1-15

To how many HDL simulator sessions will your
Simulink model connect?

“Deciding on a Configuration” on
page 1-15

Mode of Communication

Is performance the highest priority for your application?
If so, can you run MATLAB and Simulink and the HDL
simulator on the same computer system?

“Modes of Communication” on page
1-9

Does your application require only one communication
link (channel) on a single computing system?

“Modes of Communication” on page
1-9

Is configuration flexibility a high priority for your
application? Does the application have growth
potential?

“Modes of Communication” on page
1-9

Do you prefer to use the TCP/IP socket mode of
communication for a single-computer configuration? If
so, do you want the Link for Cadence Incisive software
to identify an available socket port on the system or do
you want to choose a socket port yourself?

“Choosing TCP/IP Socket Ports” on
page 1-18

Network Configurations

Have you identified the computer systems that will
function as Link for Cadence Incisive servers?

“Identifying a Server in a Network
Configuration” on page 1-17

What is the Internet address or host name of each
computer system that will function as a server?

“Identifying a Server in a Network
Configuration” on page 1-17

1-14

Installation and Setup

Environment Requirements Checklist (Continued)

Requirement For More Information, See...

Do you want the Link for Cadence Incisive software
to identify an available TCP/IP socket port on server
systems for establishing communication links? Instead,
do you want to choose or identify TCP/IP socket ports
yourself?

“Choosing TCP/IP Socket Ports” on
page 1-18

Related Software

Is the HDL simulator installed on all systems as needed
for your application?

“Installing Related Application
Software” on page 1-22

Is MATLAB installed on all systems
as needed for your application?
(See also HDL Simulator Setup, later in this
table.)

“Installing Related Application
Software” on page 1-22

Does your application require the use of any toolboxes?
If so, are the toolboxes installed on all systems as
needed for your application?

“Installing Related Application
Software” on page 1-22

Will you be using the Simulink component of the Link
for Cadence Incisive software? If so, are Simulink
and Simulink Fixed Point installed on all systems as
needed for your application? Are the required blocksets
installed?

“Installing Related Application
Software” on page 1-22

HDL Simulator Setup

Will you be running the HDL simulator on a machine
that does not have MATLAB installed?

“Setting Up the HDL Simulator
for Use with the Link for Cadence
Incisive Software” on page 1-23

Deciding on a Configuration
As you consider various configurations for an application, keep the following
general guidelines in mind:

• Shared memory communication is an option for configurations that require
only one communication link on a single computing system.

1-15

1 Getting Started

• TCP/IP socket communication is required for configurations that use
multiple communication links on one or more computing systems. Unique
TCP/IP socket ports distinguish the communication links.

• In any configuration, an instance of MATLAB can run only one instance of
the Link for Cadence Incisive MATLAB server (hdldaemon) at a time.

• In a TCP/IP configuration, the MATLAB server can handle multiple client
connections to one or more HDL simulator sessions.

• HDL Cosimulation blocks in a Simulink model can connect to the same or
different HDL simulator sessions.

The following lists provide samples of valid configurations for using Incisive
simulators with MATLAB and Simulink, respectively. The scenarios apply
whether the HDL simulator is running on the same or different computing
system as MATLAB or Simulink. In a network configuration, you use an
Internet address in addition to a TCP/IP socket port to identify the servers in
an application environment.

MATLAB
The following list gives a sampling of valid configurations for using Incisive
simulators with MATLAB:

• An HDL simulator session linked to a MATLAB function foo through a
single instance of the MATLAB server

• An HDL simulator session linked to multiple MATLAB functions (for
example, foo and bar) through a single instance of the MATLAB server

• An HDL simulator session linked to a MATLAB function foo through
multiple instances of the MATLAB server (each running within the scope
of a unique MATLAB session)

• Multiple HDL simulator sessions each linked to a MATLAB function foo
through multiple instances of the MATLAB server (each running within
the scope of a unique MATLAB session)

• Multiple HDL simulator sessions each linked to a different MATLAB
function (for example, foo and bar) through the same instance of the
MATLAB server

1-16

Installation and Setup

• Multiple HDL simulator sessions each linked to MATLAB function foo
through a single instance of the MATLAB server

Note Although multiple HDL simulator sessions can link to the same
MATLAB function in the same instance of the MATLAB server, as the
last configuration scenario suggests, such links are not recommended. If
the MATLAB function maintains state (for example, maintains global or
persistent variables), you may experience unexpected results because the
MATLAB function does not distinguish between callers when handling input
and output data. If you must apply this configuration scenario, consider
deriving unique instances of the MATLAB function to handle requests for
each HDL model.

Simulink
The following list gives a sampling of valid local configurations for using
Simulink with Incisive simulators:

• An HDL Cosimulation block in a Simulink model linked to a single HDL
simulator session

• Multiple HDL Cosimulation blocks in a Simulink model linked to the same
HDL simulator session

• An HDL Cosimulation block in a Simulink model linked to multiple HDL
simulator sessions

• Multiple HDL Cosimulation blocks in a Simulink model linked to different
HDL simulator sessions

Identifying a Server in a Network Configuration
If you need to set up your Link for Cadence Incisive application such that the
Incisive simulator and the MathWorks products reside on different systems,
you must set up the systems to use

• TCP/IP networking protocol

• Link for Cadence Incisive TCP/IP socket mode of communication

As part of your application setup, you must identify

1-17

1 Getting Started

• The Internet address or host name of the computer running the server
component of your application

• The TCP/IP socket port number or service name (alias) to be used for Link
for Cadence Incisive connections

For guidelines on choosing TCP/IP socket ports, see “Choosing TCP/IP Socket
Ports” on page 1-18.

Choosing TCP/IP Socket Ports
To use the TCP/IP socket communication, you must choose a TCP/IP socket
port number that is available in your computing environment for use by the
Link for Cadence Incisive client and server components. The two components
use the port number to establish a TCP/IP connection. Port numbers are
particularly important for applications that implement multiple clients and
servers and use TCP/IP socket communication on a single node. The port
numbers uniquely identify each client and server and enable connections only
between components sharing the same port number. For remote network
configurations, the Internet address helps distinguish multiple connections.

A TCP/IP socket port number (or service name or alias, see “TCP/IP Services”
on page 1-20) is a shared resource. To avoid potential collisions, particularly
on servers, you should use caution when choosing a port number for your
application. Consider the following guidelines:

• If you are setting up a link for MATLAB, consider the Link for Cadence
Incisive option that directs the operating system to choose an available port
number for you. To use this option, specify 0 for the socket port number.

• Choose a port number that is registered for general use. Registered ports
range from 1024 to 49151.

• If you do not have a registered port to use, review the list of assigned
registered ports and choose a port in the range 5001 to 49151 that is not in
use. Ports 1024 to 5000 are also registered, however operating systems use
ports in this range for client programs.

• Choose a port number that does not contain patterns or have a known
meaning. That is, avoid port numbers that more likely to be used by others
because they are easier to remember.

1-18

Installation and Setup

• Do not use ports 1 to 1023. These ports are reserved for use by the Internet
Assigned Numbers Authority (IANA).

• Avoid using ports 49152 through 65535. These are dynamic ports that
operating systems use randomly. If you choose one of these ports, you risk a
potential port conflict.

• On the Windows platform, do not choose a filtered TCP/IP port. The
Windows TCP/IP port filtering mechanism allows disabling access to
selected ports for security purposes. TCP/IP port filtering on either the
client or server side can cause the Link for Cadence Incisive interface to
fail to make a connection.

In such cases the error messages displayed by the Link for Cadence Incisive
software indicate the lack of a connection, but do not explicitly indicate
the cause.

In MATLAB, checking the server status at this point indicates that the
server is running with no connections:

x=hdldaemon('status')
HDLDaemon server is running with 0 connections
x=

4449

If you suspect that your chosen socket port is filtered, you can check it as
follows:

a From the Windows Start menu, select Settings > Network
Connections.

b Select Local Area Connection from the Network and Dialup
Connections window.

c From the Local Area Connection dialog, select
Properties > Internet Protocol (TCP/IP). From there,
select Properties > Advanced > Options. Finally, select TCP/IP
filtering > Properties.

d If your port is listed in the TCP/IP filtering>Properties dialog, you
should select an unfiltered port. The easiest way to do this is to specify 0
for the socket port number to let the Link for Cadence Incisive software
choose an available port number for you.

1-19

1 Getting Started

Note The socket port resource is associated with the server component of
a Link for Cadence Incisive configuration. That is, if you use MATLAB in a
test bench configuration, the socket port is a resource of the system running
MATLAB. If you use Simulink in a cosimulation configuration, the socket port
is a resource of the system running the HDL simulator.

TCP/IP Services
By setting up the MATLAB server as a service, you can run the service in the
background, allowing it to handle different HDL simulator client requests
over time without you having to start and stop the service manually each
time. Although it makes less sense to set up a service for Simulink as you
cannot really automate the starting of an HDL simulator service, you might
want to use a service with Simulink to reserve a TCP/IP socket port.

Services are defined in the etc/services file located on each computer;
consult the User’s Guide for your particular operating system for instructions
and more information on setting up TCP/IP services.

For remote connections, the service name must be set up on both the client
and server side. For example, if the service name is “matlabservice” and
you are performing a Windows-Linux cross-platform simulation, the service
name must appear in the service file on both the Windows machine and the
Linux machine.

Checking Product Requirements
Link for Cadence Incisive software requires the following:

1-20

Installation and Setup

Platform For the specific platforms supported with
the current release of the Link for Cadence
Incisive software, visit the MathWorks Link
for Cadence Incisive product requirements
page.

Application software Incisive HDL Simulator, Incisive Design Team
Simulator, or Incisive Enterprise Specman
Simulator. Visit the MathWorks Link for
Cadence Incisive product requirements
page for specific versions supported with
the current release of the Link for Cadence
Incisive software.

MATLAB

Additional application
software required for
cosimulation with
Simulink

Simulink

Simulink Fixed Point

Fixed Point Toolbox

1-21

http://www.mathworks.com/products/incisive/requirements.html
http://www.mathworks.com/products/incisive/requirements.html

1 Getting Started

Optional application
software

Communications Blockset

Signal Processing Blockset

Filter Design Toolbox

Signal Processing Toolbox

Video and Image Processing Blockset

Note Many Link for Cadence Incisive demos
require one or more of the above.

Platform-specific
software

The Link for Cadence Incisive shared libraries
(liblfihdls*.so, liblfihdlc*.so) are
built using the gcc included in the Incisive
simulator platform distribution. If you
are linking your own applications into the
HDL simulator, the recommendation is that
you also build against this gcc. See the
HDL simulator documentation for more
details about how to build and link your own
applications.

Installing Related Application Software
Based on your configuration decisions and the software required for your
Link for Cadence Incisive application, identify software you need to install
and where you need to install it. For example, if you need to run multiple
instances of the Link for Cadence Incisive MATLAB server, you need to install
MATLAB and any applicable toolbox software on multiple systems. Each
instance of MATLAB can run only one instance of the server.

For details on how to install an Incisive simulator, see the installation
instructions for that product. For information on installing MathWorks
products, see the MATLAB installation instructions.

1-22

Installation and Setup

Installing the Link for Cadence Incisive Software
Based on your configuration decisions, identify systems on which you need to
install Link for Cadence Incisive software. Install Link for Cadence Incisive
software on each system running MATLAB that requires a communication
channel for the Incisive simulator and MATLAB or Simulink cosimulation.

For details on how to install Link for Cadence Incisive software, see the
MATLAB installation instructions.

Setting Up the HDL Simulator for Use with the Link
for Cadence Incisive Software
You can choose to have the HDL simulator run on the same machine as
MATLAB or on a separate machine.

• If you choose the same machine, then you must run nclaunch from the
MATLAB prompt at least once. This command creates a Tcl script that sets
up Link for Cadence Incisive commands for use with Incisive simulators.
See “Setting Up Link for Cadence Incisive Software for Use with the
Incisive Simulator on the Same Machine as MATLAB” on page 1-23.

• If you choose to use a different machine, follow the instructions in “Setting
Up Link for Cadence Incisive Software for Use with the Incisive Simulator
on a Separate Machine from MATLAB” on page 1-24.

Setting Up Link for Cadence Incisive Software for Use with the
Incisive Simulator on the Same Machine as MATLAB
After all the required software is installed, set up the Incisive simulator so
that it is always ready for use with MATLAB and Simulink and so that you
can invoke the HDL simulator outside of MATLAB by creating a specialized
Tcl startup script. The first time you want to connect MATLAB or Simulink
and an Incisive simulator through the Link for Cadence Incisive software, use
the nclaunch command with the following arguments.

nclaunch ('tclstart', 'puts "Initializing Link for Cadence Incisive software",

'startupfile','lfiinit','starthdlsim','no')

1-23

1 Getting Started

Where lfiinit is the name you choose for the Tcl startup script. The property
name/value pair 'starthldsim' and 'no' indicate to the nclaunch function
not to start the HDL simulator when this line is executed.

After the Tcl script has been created, you can launch the Incisive simulator
from outside of MATLAB and still have access to Link for Cadence Incisive
commands by typing:

%tclsh
source tclscript
hdlsimmatlab arguments

Where tclscript is the name of the script created with nclaunch (lfiinit
in this example). hdlsimulink can also be used in place of hdlsimmatlab.

Setting Up Link for Cadence Incisive Software for Use with the
Incisive Simulator on a Separate Machine from MATLAB
If you are running the Incisive simulator on a machine that does not have
MATLAB or if you are interested in setting up your own scripting for the
building and running of the Incisive simulator, you must provide the Incisive
simulator with the libraries and configuration information it needs to
communicate with MATLAB.

Every time you start the Incisive simulator, and want it to communicate with
MATLAB, you must run ncsim with the appropriate arguments, as shown
in the following procedure.

Note This setup is supported for the platform configurations as described in
the MathWorks Link for Cadence Incisive product requirements page.

Copying Libraries and Creating Simulation Requirements.

1 On the machine with MATLAB, go to the root directory for the Link for
Cadence Incisive software:

MATLABROOT/toolbox/incisive/arch/

1-24

http://www.mathworks.com/products/incisive/

Installation and Setup

Where arch is the system type of the platform running the HDL simulator:
linux32, linux64, or solaris64.

Note If you are running ncsim in 32-bit mode on a 64-bit Linux platform,
copy the libraries from linux86.

2 Copy all the shared libraries from this directory into the desired destination
directory on the machine running the Incisive simulator.

3 Create a text file that includes the following lines:

proc nomatlabtb {args} {call nomatlabtb $args}
proc matlabtb {args} {call matlabtb $args}
proc matlabcp {args} {call matlabcp $args}
proc matlabtbeval {args} {call matlabtbeval $args}

You may give the text file any valid file name.

4 Update your scripts, makefiles, or other means of invoking the simulator
to include the following arguments to ncsim, where IUS_VERSION is
the release number of your Incisive simulator installation (e.g., 05.70),
yourpath is theLink for Cadence Incisive root directory in the first step, and
filename is the name of the text file you created in step 3:

a For the link to MATLAB (matlabcp, matlabtb):

-loadcfc /yourpath/liblfihdlc_IUS_VERSION:matlabclient -input filename

b For the link to Simulink:

-loadvpi /yourpath/liblfihdls_IUS_VERSION:simlinkserver

+socket=socketNumber

Note If yourpath is pwd, reference it as ./liblfihds.

1-25

1 Getting Started

Note The Link for Cadence Incisive shared libraries were built against the
GCC libraries included with the Incisive simulator platform distribution. It is
required that your LD_LIBRARY_PATH specify the location of these libraries
as explained in the Cadence documentation.

Here is an example for properly setting up the linux64 architecture in a csh:

% setenv LD_LIBRARY_PATH install_dir/tools/lib/64bit:\
install_dir/tools/systemc/gcc/64bit/install/lib64

1-26

Getting Help with the Link for Cadence Incisive Software

Getting Help with the Link for Cadence Incisive Software
The following sections explain how to get help with using the Link for
Cadence Incisive software:

• “Documentation Overview” on page 1-27

• “Online Help” on page 1-28

• “Demos and Tutorials” on page 1-28

Documentation Overview
The following documentation is available with this product.

Title Description

Getting Started Explains what the product is, the
steps for installing and setting
it up, how you might apply it to
the hardware design process, and
how to gain access to product
documentation and online help.

Coding a Link for Cadence Incisive
MATLAB Application

Explains how to code HDL models
and MATLAB functions for Link
for Cadence Incisive MATLAB
applications. Provides details on
how the Link for Cadence Incisive
interface maps HDL data types to
MATLAB data types and vice versa.

Starting and Controlling MATLAB
Link Sessions

Explains how to start and control
the HDL simulator and MATLAB
test bench and component sessions.

Modeling and Verifying an HDL
Design with Simulink

Explains how to use the HDL
simulator and Simulink for
cosimulation modeling.

MATLAB Functions — Alphabetical
List

Describes Link for Cadence Incisive
functions for use with MATLAB.

1-27

1 Getting Started

Title Description

HDL Simulator Tcl Commands —
Alphabetical List

Describes Link for Cadence Incisive
Tcl commands for use with the HDL
simulator.

Simulink Blocks — Alphabetical List Describes Link for Cadence Incisive
blocks for use with Simulink.

Online Help
The following online help is available:

• Online help in the MATLAB Help browser. Click the Link for Cadence
Incisive product link in the browser’s Contents.

• M-help for Link for Cadence Incisive MATLAB functions. This help is
accessible with the MATLAB help command. For example, enter the
command line help nclaunch.

• Block reference pages accessible through the Simulink interface.

Demos and Tutorials
The Link for Cadence Incisive product provides demos and tutorials to help
you get started. The demos give you a quick view of the product’s capabilities
and examples of how you might apply the product. You can run them with
limited product exposure. Tutorials provide procedural instruction on how
to apply the product.

To see a list of Link for Cadence Incisive demos and tutorials that you can
run, type the following at a MATLAB command prompt:

>> demos

Select Toolboxes > Link for Cadence Incisive from the navigational pane.

1-28

2

Coding a Link for
Cadence Incisive MATLAB
Application

Overview (p. 2-2) Provides an overview of MATLAB
test bench and component functions,
and of the steps involved in coding
these functions for use with Link for
Cadence Incisive software.

Coding Entities or Modules for
MATLAB Verification (p. 2-3)

Explains how to code a VHDL entity
or Verilog module to be verified in
the MATLAB environment.

Compiling the HDL Model (p. 2-9) Explains how to compile an HDL
design.

Coding a MATLAB Test Bench
Function (p. 2-10)

Explains how to code a MATLAB
function to verify or visualize an
HDL design.

Coding a MATLAB Component
Function (p. 2-33)

Explains how to code a MATLAB
component function.

Placing a MATLAB Test Bench
or Component Function on the
MATLAB Search Path (p. 2-35)

Explains how to place a MATLAB
function on the MATLAB search
path.

2 Coding a Link for Cadence Incisive MATLAB Application

Overview
Link for Cadence Incisive software supports two types of MATLAB functions
that interface to HDL models:

• Test bench functions are functions that let you verify the performance of
the HDL model, or of components within the model. A test bench function
drives values onto signals connected to input ports of an HDL design under
test, and receives signal values from the output ports of the module.

• MATLAB component functions are functions that simulate the behavior of
components in the HDL model. A stub module (providing port definitions
only) in the HDL model passes its input signals to the MATLAB component
function. The MATLAB component processes this data and returns the
results to the outputs of the stub module. A MATLAB component typically
provides some functionality (such as a filter) that is not yet implemented
in the HDL code.

The programming, interfacing, and scheduling conventions for test bench
functions and MATLAB component functions are almost identical. Most of
this chapter focuses on test bench functions. The test bench section is followed
by a discussion of MATLAB component functions and how to use them.

This section provides an overview of the steps required to develop an HDL
model for use with MATLAB and Link for Cadence Incisive software. To
program the HDL component of a Link for Cadence Incisive application, you
must perform the following tasks:

1 Code the HDL model for MATLAB verification “Coding Entities or Modules
for MATLAB Verification” on page 2-3.

2 Compile the HDL model.

3 Code the required MATLAB test bench or MATLAB component functions.

4 Place the MATLAB functions on the MATLAB search path.

2-2

Coding Entities or Modules for MATLAB Verification

Coding Entities or Modules for MATLAB Verification
The most basic element of communication in the Link for Cadence Incisive
interface is the VHDL entity or Verilog module. The interface passes all data
between the HDL simulator and MATLAB as port data. Link for Cadence
Incisive software works with any existing VHDL entity or Verilog module.
However, when coding a VHDL entity or Verilog module that is targeted for
MATLAB verification, you should consider its name, the types of data to be
shared between the two environments, and the direction modes. The following
sections cover these topics:

• “Overview of Steps for Coding Entities or Modules” on page 2-3

• “Choosing an Entity or Module Name” on page 2-4

• “Specifying Port/Signal and Module Paths” on page 2-4

• “Specifying Ports for the Entity or Module” on page 2-6

• “Specifying Port Direction Modes” on page 2-6

• “Specifying Port Data Types” on page 2-6

• “Sample VHDL Entity Definition” on page 2-8

Note When using a mixed-language HDL model (one that contains both
VHDL and Verilog components), MATLAB can access signals only with the
language of the top-level module instance or component.

Overview of Steps for Coding Entities or Modules
To code a VHDL entity or Verilog module for verification in the MATLAB
environment,

1 Consider choosing an entity or module name that can be used as a valid
MATLAB function name.

2 Determine the number of ports required and name them.

3 Specify a direction mode for each port.

2-3

2 Coding a Link for Cadence Incisive MATLAB Application

4 For each port, specify a VHDL or Verilog data type that is supported by
Link for Cadence Incisive software.

5 Compile the model.

The following sections provide more detail on the preceding steps.

Choosing an Entity or Module Name
Although not required, when naming the VHDL entity or Verilog module,
consider choosing a name that also can be used as a MATLAB function name.
(Generally, naming rules for VHDL or Verilog and MATLAB are compatible.)
By default, Link for Cadence Incisive software assumes that a VHDL entity
or Verilog module and its simulation function share the same name.

For example, if you name a VHDL entity decoder, Link for Cadence Incisive
software assumes the corresponding MATLAB function is decoder in file
decoder.m. If the entity and function names do not match, you must specify
the MATLAB function name explicitly when you initialize a test bench session
with the HDL simulator Tcl command matlabtb or matlabtbeval command.

For details on MATLAB function-naming guidelines, see “MATLAB
Programming Tips” on files and filenames in the MATLAB documentation.

Specifying Port/Signal and Module Paths
These rules are for signal/port and module path specifications for MATLAB.
Other specifications may work but are not guaranteed to work in this or
future releases. For Simulink path specifications, see "Full HDL Name" in the
“Ports Pane” on page 7-6 section of the HDL Cosimulation block reference.

Path specifications in MATLAB:

• If the top level is Verilog:

- Path specification must start with a top-level module name.

- Path specification can include "." or ":" path delimiters, but cannot
include a mixture.

- The leaf module or signal must match the HDL language of the top-level
module.

2-4

Coding Entities or Modules for MATLAB Verification

The following are valid signal and module path specification examples:

top.port_or_sig
top:sub:port_or_sig
top
top.sub1.sub2

The following are invalid signal and module path specification examples:

top.sub:port_or_sig
:sub:port_or_sig
:
:sub
sub/port_or_sig

• If the top level is VHDL:

- Path specification can include the top-level module or begin with ":"
to represent the top-level module.

- Path specification can include "." or ":" path delimiters, but cannot
include a mixture.

- The leaf module or signal must match the HDL language of the top-level
module.

The following are valid signal and module path specification examples:

top.port_or_sig
top:sub:port_or_sig
:sub:port_or_sig
top
top.sub1.sub2
:
:sub

The following are invalid signal and module path specification examples:

top.sub:port_or_sig
sub/port_or_sig

2-5

2 Coding a Link for Cadence Incisive MATLAB Application

Specifying Ports for the Entity or Module
Determine the number of ports required for the entity or module to be
simulated and tested. Name them within the port list for the entity or module.

Specifying Port Direction Modes
In your entity or module statement, you must specify each port with a
direction mode (input, output, or bidirectional). The following table defines
the three modes:

Use VHDL
Mode...

Use Verilog
Mode...

For Ports That...

IN input Represent signals that can be driven by
a MATLAB function

OUT output Represent signal values that are passed
to a MATLAB function

INOUT inout Represent bidirectional signals that
can be driven by or pass values to a
MATLAB function

Specifying Port Data Types
This section describes how to specify data types compatible with MATLAB for
ports in your VHDL or Verilog models. For details on how Link for Cadence
Incisive software converts data types for the MATLAB environment, see
“Data Type Conversions” on page 2-11.

Note If you use unsupported types, Link for Cadence Incisive software issues
a warning and ignores the port at run-time. For example, if you define your
interface with five ports, one of which is a VHDL access port, at run-time the
interface displays a warning and your M-code sees only four ports.

Port Data Types for VHDL Entities
In your entity statement, you must define each port, which you plan to test
with MATLAB, with a VHDL data type that is supported by the Link for

2-6

Coding Entities or Modules for MATLAB Verification

Cadence Incisive interface. The interface can convert scalar and composite
data of the following VHDL types to comparable MATLAB types:

• STD_LOGIC, STD_ULOGIC, BIT, STD_LOGIC_VECTOR, STD_ULOGIC_VECTOR,
BIT_VECTOR, and BOOLEAN

• INTEGER and NATURAL

• REAL

• TIME

• Enumerated types, including user-defined enumerated types and
CHARACTER

The interface also supports all subtypes and arrays of the preceding types.

Note Link for Cadence Incisive software does not support VHDL extended
identifiers for

• port and signal names used in cosimulation

• enum literals when used as array indices of port and signal names used
in cosimulation

Basic identifiers for VHDL are supported.

Port Data Types for Verilog Modules
In your module definition, you must define each port, which you plan to test
with MATLAB, with a Verilog port data type that is supported by the Link
for Cadence Incisive software. The interface can convert data of the following
Verilog port types to comparable MATLAB types:

• reg

• integer

• wire

2-7

2 Coding a Link for Cadence Incisive MATLAB Application

Note Link for Cadence Incisive software does not support Verilog escaped
identifiers for port and signal names used in cosimulation. Simple identifiers
for Verilog are supported.

Sample VHDL Entity Definition
The sample VHDL code fragment below defines the entity decoder. By
default, the entity is exercised by MATLAB test bench function decoder.

The keyword PORT marks the start of the entity’s port clause, which defines
two IN ports — isum and qsum — and three OUT ports — adj, dvalid, and
odata. The output ports drive signals to MATLAB function input ports for
processing. The input ports receive signals from the MATLAB function output
ports.

Both input ports are defined as vectors consisting of five standard logic values.
The output port adj is also defined as a standard logic vector, but consists of
only two values. The output ports dvalid and odata are defined as scalar
standard logic ports. For information on how the Link for Cadence Incisive
software converts data of standard logic scalar and composite types for use in
the MATLAB environment, see “Data Type Conversions” on page 2-11.

ENTITY decoder IS
PORT (

isum : IN std_logic_vector(4 DOWNTO 0);
qsum : IN std_logic_vector(4 DOWNTO 0);
adj : OUT std_logic_vector(1 DOWNTO 0);
dvalid : OUT std_logic;
odata : OUT std_logic);

END decoder ;

2-8

Compiling the HDL Model

Compiling the HDL Model
After you create or edit your HDL design source files, use the HDL simulator
tools to compile and elaborate the code. The Incisive simulator allows for
1-step and 3-step processes for HDL compilation, elaboration, and simulation.

The following Incisive simulator command compiles the VHDL file
modsimrand.vhd:

sh> ncvhdl modsimrand.vhd

The following Incisive simulator command compiles and elaborates the
Verilog design test.v, and then loads it for simulation, in a single step:

sh> ncverilog +gui +access+rwc +linedebug test.v

The following sequence of Incisive simulator commands performs all the same
processes in multiple steps:

sh> ncvlog linedebug test.v
sh> ncelab access +rwc test
sh> ncsim test

Note You should provide read/write access to the signals that are connecting
to the MATLAB session for cosimulation. The previous example demonstrates
how to provide read/write access to all signals in your design. For higher
performance, you want to provide access only to those signals used in
cosimulation. See the description of the +access flag to ncverilog and the
-access argument to ncelab for details.

See the Incisive simulator documentation for complete details on compiling
and elaborating your HDL designs. For more examples, see Link for Cadence
Incisive demos and tutorials.

2-9

2 Coding a Link for Cadence Incisive MATLAB Application

Coding a MATLAB Test Bench Function
When coding a MATLAB function that is to verify or visualize an HDL model,
you must adhere to specific coding conventions, understand the data type
conversions that occur, and program data type conversions for operating on
data and returning data to the HDL simulator. The following sections cover
these topics:

• “Overview of the Steps for Coding a MATLAB Test Bench Function” on
page 2-10

• “Data Type Conversions” on page 2-11

• “Naming a MATLAB Test Bench Function” on page 2-15

• “Passing Parameters to and from the MATLAB Function” on page 2-16

• “Gaining Access to and Applying Port Information” on page 2-17

• “Converting Data for Manipulation” on page 2-20

• “Converting Data for Return to the HDL Simulator” on page 2-21

• “Sample MATLAB Test Bench Function” on page 2-26

Overview of the Steps for Coding a MATLAB Test
Bench Function
To code a MATLAB function that is to verify or visualize an HDL model,

1 Understand how Link for Cadence Incisive software converts HDL model
data for use in the MATLAB environment.

2 Name the MATLAB test function. Consider naming it with the name of the
HDL model the function is to test.

3 Define expected parameters in the function definition line.

4 Determine the types of port data being passed into the function.

5 Extract and, if appropriate for the simulation, apply information received
in the portinfo structure.

6 Convert data for manipulation in the MATLAB environment, as necessary.

2-10

Coding a MATLAB Test Bench Function

7 Convert data that needs to be returned to the HDL simulator.

Data Type Conversions
This section describes data type conversions that Link for Cadence Incisive
software performs in order to transmit and receive data between HDL models
and the MATLAB environment.

VHDL Data Type Conversions
Link for Cadence Incisive software converts VHDL entity data to types that
apply in the MATLAB environment. To program a MATLAB function for a
VHDL model, you must understand the type conversions required by your
application. You may also need to handle differences between the array
indexing conventions employed by VHDL and MATLAB.

The data types of arguments passed in to the function determine

• The types of conversions required before and after data is manipulated

• The types of conversions required to return data to the Incisive simulator

The following table summarizes how Link for Cadence Incisive software
converts supported VHDL data types to MATLAB types based on whether the
type is scalar and composite.

VHDL-to-MATLAB Data Type Conversions

VHDL Types... As Scalar Converts to... As Composite Converts to...

STD_LOGIC, STD_ULOGIC, and
BIT

A character that matches
the character literal for the
desired logic state.

STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED, and
UNSIGNED

A column vector of characters (as
defined in VHDL Conversions
for the Incisive Simulator on
page 2-22) with one bit per
character.

2-11

2 Coding a Link for Cadence Incisive MATLAB Application

VHDL-to-MATLAB Data Type Conversions (Continued)

VHDL Types... As Scalar Converts to... As Composite Converts to...

Arrays of STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED, and
UNSIGNED

An array of characters (as
defined above) with a size that
is equivalent to the VHDL port
size.

INTEGER and NATURAL Type int32. Arrays of type int32 with a size
that is equivalent to the VHDL
port size.

REAL Type double. Arrays of type double with a
size that is equivalent to the
VHDL port size.

2-12

Coding a MATLAB Test Bench Function

VHDL-to-MATLAB Data Type Conversions (Continued)

VHDL Types... As Scalar Converts to... As Composite Converts to...

TIME Type double for time values
in seconds and type int64
for values representing
simulator time increments
(see the description of the
'time' option in “Starting
the MATLAB Server” on
page 3-7).

Arrays of type double or int64
with a size that is equivalent to
the VHDL port size.

Enumerated types Character array (string)
that contains the MATLAB
representation of a VHDL
label or character literal.
For example, the label high
converts to 'high' and
the character literal 'c'
converts to '''c'''.

Cell array of strings with
each element equal to a label
for the defined enumerated
type. Each element is the
MATLAB representation of
a VHDL label or character
literal. For example, the
vector (one, '2', three)
converts to the column vector
['one'; '''2'''; 'three'].
A user-defined enumerated type
that contains only character
literals, converts to a vector or
array of characters as indicated
for the types STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED, and
UNSIGNED.

Array Indexing Differences Between MATLAB and VHDL. MATLAB
indexes array elements by using a column-major numbering scheme, starting
with column 1. That is, MATLAB internally stores data elements from the
first column first, the second column second, and so on through the last
column. This reverses the order of indexes between MATLAB and VHDL. For
example, the following VHDL program declares the port sta as an array of
two 8-bit bytes.

2-13

2 Coding a Link for Cadence Incisive MATLAB Application

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.numeric_std.all;

PACKAGE myporttype IS

TYPE twobytes IS ARRAY(1 TO 2) OF BIT_VECTOR(1 TO 8);

END myporttype;

USE WORK.myporttype.all;

ENTITY index_port IS

PORT (

sta : OUT twobytes);

END index_port ;

ARCHITECTURE rtl OF index_port IS

CONSTANT myvalue : twobytes := ("00001011", "10101101"); -- 0x0bad

BEGIN

sta <= myvalue;

END rtl;

In MATLAB, you could address a single element of this array as in the
following example:

iport.sta(7,2) = '1';

Note also that VHDL arrays indices are commonly zero-based. That is, they
are defined as (0 to n) or (n DOWNTO 0). In such cases, an offset of 1 is applied
because MATLAB array indexing always begins at 1.

Verilog Data Type Conversions
Link for Cadence Incisive software converts Verilog module data to types
that apply in the MATLAB environment. To program a MATLAB function
for a Verilog model, you must understand the type conversions required by
your application.

The data types of arguments passed in to the function determine

• The types of conversions required before and after data is manipulated

2-14

Coding a MATLAB Test Bench Function

• The types of conversions required to return data to the Incisive simulator

The following table summarizes how Link for Cadence Incisive software
converts supported Verilog data types to MATLAB types. Only scalar data
types are supported for Verilog.

Verilog-to-MATLAB Data Type Conversions

Verilog Types... Converts to...

wire, reg A character or a column vector of
characters that matches the character
literal for the desired logic states
(bits).

integer A 32-element column vector of
characters that matches the character
literal for the desired logic states
(bits).

Array Indexing Differences Between MATLAB and Verilog. MATLAB
indexes array elements by using a column-major numbering scheme, starting
with column 1. Thus, MATLAB internally stores data elements from the first
column first, the second column second, and so on through the last column.
This storage alignment reverses the order of indexes between MATLAB and
Verilog.

Naming a MATLAB Test Bench Function
You can name and specify a MATLAB test bench function however you like,
so long as you adhere to MATLAB function and file naming guidelines. By
default, the Link for Cadence Incisive interface assumes the name for a
MATLAB function matches the name of the HDL model that the function
verifies or visualizes.

For example, if you name the VHDL entity mystdlogic, Link for Cadence
Incisive software assumes the corresponding MATLAB function is mystdlogic
and resides in the file mystdlogic.m.

2-15

2 Coding a Link for Cadence Incisive MATLAB Application

For details on MATLAB function naming guidelines, see “MATLAB
Programming Tips” on files and file names in the MATLAB documentation.

Passing Parameters to and from the MATLAB Function
The Link for Cadence Incisive interface expects a MATLAB test bench
function to be defined with the following function definition line:

function [iport, tnext] = MyFunctionName(oport, tnow, portinfo)

The data passed into the function through the output parameters is defined by
the structure of the corresponding HDL model. The function parameters are

• iport — Structure that drives (by deposit) values onto signals connected to
ports of the associated HDL model.

• tnext (optional) — Specifies time at which the MATLAB callback function
is executed. This parameter should be initialized to an empty value ([]). If
it is not subsequently updated, no new entries are added to the simulation
schedule. By default, time is represented in seconds. The interface accepts
64-bit integers, which are interpreted as multiples of the HDL simulator
resolution limit.

• oport — Structure that receives signal values from the output ports
defined for the associated HDL model at the time specified by tnow.

• tnow — Receives the simulation time at which the MATLAB function
is called. By default, time is represented in seconds. The interface also
supports full 64-bit time resolution. For more information see “Starting
the MATLAB Server” on page 3-7.

• portinfo — For the first call to the function (at the start of the simulation)
only, receives a structure whose fields describe the ports defined for the
associated HDL model. For each port, the portinfo structure passes
information such as the port’s type, direction, and size. The information
passed to this parameter is useful for validating the module under test.
You can use the port information to create a generic MATLAB function that
operates differently depending on the port information supplied at startup.

2-16

Coding a MATLAB Test Bench Function

Note Note that the function outputs must be initialized to empty values, as
in the following code example:

tnext = [];
iport = struct();

Recommended practice is to initialize the function outputs at the beginning of
the function.

For more information on using tnext and tnow for simulation scheduling, see
“Deciding on MATLAB Link Session Scheduling Options” on page 3-11 and
“Controlling Callback Timing from a MATLAB Test Bench or Component
Function” on page 3-12. For more information on port data, see “Gaining
Access to and Applying Port Information” on page 2-17.

Gaining Access to and Applying Port Information
The Link for Cadence Incisive interface passes information about the HDL
design under test in the portinfo structure. The portinfo structure is
passed as the third argument to the function. It is passed only in the first call
to your MATLAB function. The information passed in the portinfo structure
is useful for validating the module under simulation. You could use the port
information to create a generic MATLAB function that operates differently
depending on the port information supplied at startup. The information
is supplied in three fields, as indicated below. The content of these fields
depends on the type of ports defined for the HDL model.

portinfo.field1.field2.field3

The following table lists possible values for each field and identifies the port
types for which the values apply.

2-17

2 Coding a Link for Cadence Incisive MATLAB Application

HDL Port Information

Field... Can
Contain...

Which Indicates... And Applies to...

in The port is an input port All port types

out The port is an output
port

All port types

inout The port is a
bidirectional port

All port types

field1

tscale The simulator resolution
limit in seconds as
specified in the HDL
simulator

All types

field2 portname The name of the port All port types

2-18

Coding a MATLAB Test Bench Function

HDL Port Information (Continued)

Field... Can
Contain...

Which Indicates... And Applies to...

type The port type

For VHDL: integer,
real, time, or enum

For Verilog,
'verilog_logic'
identifies port types
reg, wire, integer

All port types

right
(VHDL only)

The VHDL RIGHT
attribute

VHDL integer,
natural, or positive
port types

left
(VHDL only)

The VHDL LEFT
attribute

VHDL integer,
natural, or positive
port types

size VHDL: The size of the
matrix containing the
data

Verilog: The size of the
bit vector containing the
data

All port types

field3

label VHDL: A character
literal or label

Verilog: The string
'01ZX'

VHDL: Enumerated
types, including
predefined types BIT,
STD_LOGIC, STD_ULOGIC,
BIT_VECTOR, and
STD_LOGIC_VECTOR

Verilog: All port types

To use portinfo in your MATLAB function to verify port data, do the
following:

1 Check whether portinfo data has been passed with a call to the MATLAB
function nargin. For example:

2-19

2 Coding a Link for Cadence Incisive MATLAB Application

if(nargin == 3),

2 If data has been passed, you can then verify it. The following code fragment
checks whether the resolution limit for time has been set to 1 ns:

.

.

.
tscale = portinfo.tscale;
if abs(tscale - 1e-9) > eps,
error('This test requires a resolution limit of 1 ns');
end

Converting Data for Manipulation
Depending on how your simulation MATLAB function uses the data it
receives from the HDL simulator, the function may need to convert data to a
different type before manipulating it. The following table lists circumstances
under which such conversions are required.

Required Data Conversions

If the Function Needs
to...

Then...

Compute numeric data
that is received as a type
other than double

Use the double function to convert the
data to type double before performing the
computation. For example:

datas(inc+1) = double(idata);

2-20

Coding a MATLAB Test Bench Function

Required Data Conversions (Continued)

If the Function Needs
to...

Then...

Convert a standard
logic or bit vector to an
unsigned integer

Use the bin2dec function to convert the data to
an unsigned decimal value. For example:

uval = bin2dec(oport.val')

This example assumes the standard logic or bit
vector is composed of the character literals '1'
and '0' only. These are the only two values that
can be converted to an integer equivalent.

Convert a standard logic
or bit vector to a signed
integer

Use the following application of the bin2dec
function to convert the data to a signed decimal
value. For example:

suval =

bin2dec(oport.val')-2^length(oport.val);

This example assumes the bit vector is composed
of the character literals '1' and '0' only. These
are the only two values that can be converted to
an integer equivalent.

Test port values of VHDL
type STD_LOGIC and
STD_LOGIC_VECTOR

Use the all function as follows:

all(oport.val == '1' | oport.val
== '0')

This example returns True if all elements are
'1' or '0'.

Converting Data for Return to the HDL Simulator
If your simulation MATLAB function needs to return data to the HDL
simulator, it may be necessary for you to first convert the data to a type

2-21

2 Coding a Link for Cadence Incisive MATLAB Application

supported by Link for Cadence Incisive software. The following tables list
circumstances requiring such conversions for VHDL and Verilog.

VHDL Conversions for the Incisive Simulator

To Return Data to
an IN Port of Type...

Then...

STD_LOGIC,
STD_ULOGIC, or BIT

Declare the data as a character that matches the
character literal for the desired logic state. For
STD_LOGIC and STD_ULOGIC, the character can be
'U', 'X', '0', '1', 'Z', 'W', 'L', 'H', or '-'. For
BIT, the character can be '0' or '1'. For example:

iport.s1 = 'X'; %STD_LOGIC
iport.bit = '1'; %BIT

STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED,
or UNSIGNED

Declare the data as a column vector or row vector
of characters (as defined above) with one bit per
character. For example:

iport.s1v = 'X10ZZ'; %STD_LOGIC_VECTOR

iport.bitv = '10100'; %BIT_VECTOR

iport.uns = dec2bin(10,8); %UNSIGNED, 8 bits

2-22

Coding a MATLAB Test Bench Function

VHDL Conversions for the Incisive Simulator (Continued)

To Return Data to
an IN Port of Type...

Then...

Array of
STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED,
or UNSIGNED

Declare the data as an array of type character with
a size that is equivalent to the VHDL port size.
Keep in mind that MATLAB uses a column-major
numbering scheme to represent data elements
internally and begins at 1. That means that
MATLAB internally stores data elements from the
first column first, then data elements from the
second column second, and so on through the last
column. VHDL array indexing:

PORT (
sta : OUT ARRAY(1 TO 2) OF
BIT_VECTOR(1 TO 8););
.
.
.
sta(2)(7) <= '1'

MATLAB equivalent array indexing:

iport.sta(7,2) = '1';

INTEGER or NATURAL Declare the data as an array of type int32 with
a size that is equivalent to the VHDL array size.
Alternatively, convert the data to an array of type
int32 with the MATLAB int32 function before
returning it. Be sure to limit the data to values
with the range of the VHDL type. If necessary,
check the right and left fields of the portinfo
structure. For example:

iport.int = int32(1:10)';

2-23

2 Coding a Link for Cadence Incisive MATLAB Application

VHDL Conversions for the Incisive Simulator (Continued)

To Return Data to
an IN Port of Type...

Then...

REAL Declare the data as an array of type double with a
size that is equivalent to the VHDL port size. For
example:

iport.dbl = ones(2,2);

TIME Declare a VHDL TIME value as time in seconds,
using type double, or as an integer of simulator
time increments, using type int64. You can use the
two formats interchangeably and what you specify
does not depend on the hdldaemon 'time' option
(see “Starting the MATLAB Server” on page 3-7),
which applies to IN ports only. Declare an array of
TIME values by using a MATLAB array of identical
size and shape. All elements of a given port are
restricted to time in seconds (type double) or
simulator increments (type int64), but otherwise
you can mix the formats. For example:

iport.t1 = int64(1:10)'; %Simulator time
%increments

iport.t2 = 1e-9; %1 nsec

2-24

Coding a MATLAB Test Bench Function

VHDL Conversions for the Incisive Simulator (Continued)

To Return Data to
an IN Port of Type...

Then...

Enumerated types Declare the data as a string for scalar ports or
a cell array of strings for array ports with each
element equal to a label for the defined enumerated
type. The 'label' field of the portinfo structure
lists all valid labels (see “Gaining Access to and
Applying Port Information” on page 2-17). Except
for character literals, labels are not case sensitive.
In general, you should specify character literals
completely, including the single quotes, as shown
in the first example below.

iport.char = {'''A''', '''B'''}; %Character

%literal

iport.udef = 'mylabel'; %User-defined label

Character array for
standard logic or bit
representation

Use the dec2bin function to convert the integer.
For example:

oport.slva =dec2bin([23 99],8)';

This example converts two integers to a 2-element
array of standard logic vectors consisting of 8 bits.

2-25

2 Coding a Link for Cadence Incisive MATLAB Application

Verilog Conversions for the Incisive Simulator

To Return Data to
an input Port of
Type...

Then...

reg, wire Declare the data as a character or a column vector
of characters that matches the character literal for
the desired logic state ('0' or '1'). For example:

iport.bit = '1';

integer Declare the data as a 32-element column vector
of characters (as defined above) with one bit per
character.

Sample MATLAB Test Bench Function
This section uses a sample MATLAB function to identify sections of a
MATLAB test bench function required by Link for Cadence Incisive software.
The example uses a VHDL entity and MATLAB function code drawn from the
decoder portion of the Manchester Receiver demo. For the complete VHDL
and M-code listings, see the following files:

• matlabroot/toolbox/incisive/incisivedemos/manchester/decoder.vhd

• matlabroot/toolbox/incisive/incisivedemos/manchester/decoder.m

The first step to coding a MATLAB test bench function is to understand
how the data modeled in the VHDL entity maps to data in the MATLAB
environment. The VHDL entity decoder is defined as follows:

ENTITY decoder IS
PORT (

isum : IN std_logic_vector(4 DOWNTO 0);
qsum : IN std_logic_vector(4 DOWNTO 0);
adj : OUT std_logic_vector(1 DOWNTO 0);
dvalid : OUT std_logic;
odata : OUT std_logic
);

2-26

Coding a MATLAB Test Bench Function

END decoder ;

The following discussion highlights key lines of code in the definition of the
manchester_decoder MATLAB function.

1 Specify the MATLAB function name and required parameters.

The function definition on the first line represents the communication
channel between MATLAB and the Incisive simulator. The following code
is the function definition of the manchester_decoder MATLAB function.

function [iport,tnext] = manchester_decoder(oport,tnow,portinfo)

The function definition

• Names the function. This definition names the function
manchester_decoder, which differs from the entity name decoder.
Because the names differ, the function name must be specified explicitly
later when the entity is initialized for verification with the matlabtb or
matlabtbeval HDL simulator Tcl command.

• Defines required input and output parameters. A MATLAB test bench
function must include two input parameters, iport and tnext, and
three output parameters, oport, tnow, and portinfo, and must appear
in the order shown.

Note that the function outputs must be initialized to empty values, as in
the following code example:

tnext = [];
iport = struct();

Recommended practice is to initialize the function outputs at the
beginning of the function.

iport Forces (by deposit) a value onto the signal connected to the
entity’s input ports, isum and qsum.

tnext Specifies a time value that indicates when the Incisive
simulator is to call back the MATLAB function.

oport Receives VHDL signal values from the entity’s output
ports, adj, dvalid, and odata.

2-27

2 Coding a Link for Cadence Incisive MATLAB Application

tnow Receives the simulation time at which the Incisive
simulator calls the MATLAB function.

portinfo For the first call to the function, receives a structure that
describes the ports defined for the entity.

The following figure shows the relationship between the entity’s ports
and the MATLAB function’s iport and oport parameters.

���
��1�+

�����	������ %�����	������

�����1����	234
�����1'���	234

�����1�
5	264
�����1
����
274
�����1�
���274

For more information on the required MATLAB function parameters, see
“Passing Parameters to and from the MATLAB Function” on page 2-16.

2 Make note of the data types of ports defined for the entity under
simulation.

Link for Cadence Incisive software converts HDL data types to comparable
MATLAB data types and vice versa. As you develop your MATLAB
function, you must know the types of the data that it receives from the
Incisive simulator and needs to return to the Incisive simulator.

The VHDL entity defined for this example consists of the following ports:

2-28

Coding a MATLAB Test Bench Function

VHDL Example Port Definitions

Port Direction Type... Converts
to/Requires
Conversion
to...

isum IN STD_LOGIC_VECTOR(4 DOWNTO 0) A 5-bit
column or
row vector
of characters
where each
bit maps
to standard
logic
character 0
or 1.

qsum IN STD_LOGIC_VECTOR(4 DOWNTO 0) A 5-bit
column or
row vector
of characters
where each
bit maps
to standard
logic
character 0
or 1.

2-29

2 Coding a Link for Cadence Incisive MATLAB Application

VHDL Example Port Definitions (Continued)

Port Direction Type... Converts
to/Requires
Conversion
to...

adj OUT STD_LOGIC_VECTOR(1 DOWNTO 0) A 2-element
column
vector of
characters.
Each
character
matches a
corresponding
character
literal that
represents a
logic state
and maps to
a single bit.

dvalid OUT STD_LOGIC A character
that matches
the character
literal
representing
the logic
state.

odata OUT STD_LOGIC A character
that matches
the character
literal
representing
the logic
state.

For more information on interface data type conversions, see “Data Type
Conversions” on page 2-11.

2-30

Coding a MATLAB Test Bench Function

3 Set up any required timing parameters.

The tnext assignment statement sets up timing parameter tnext such
that the simulator calls back the MATLAB function every nanosecond.

tnext = tnow+1e-9;

4 Convert output port data to appropriate MATLAB data types for
processing.

The following code excerpt illustrates data type conversion of output port
data.

%% Compute one row and plot
isum = isum + 1;
adj(isum) = bin2dec(oport.adj');
data(isum) = bin2dec([oport.dvalid oport.odata]);
.
.
.

The two calls to bin2dec convert the binary data that the MATLAB
function receives from the entity’s output ports, adj, dvalid, and odata to
unsigned decimal values that MATLAB can compute. The function converts
the 2-bit transposed vector oport.adj to a decimal value in the range 0 to
4 and oport.dvalid and oport.odata to the decimal value 0 or 1.

“Converting Data for Manipulation” on page 2-20 provides a summary of
the types of data conversions to consider when coding simulation MATLAB
functions.

5 Convert data to be returned to the Incisive simulator.

The following code excerpt illustrates data type conversion of data to be
returned to the Incisive simulator.

if isum == 17
iport.isum = dec2bin(isum,5);
iport.qsum = dec2bin(qsum,5);

else
iport.isum = dec2bin(isum,5);

end

2-31

2 Coding a Link for Cadence Incisive MATLAB Application

The three calls to dec2bin convert the decimal values computed by
MATLAB to binary data that the MATLAB function can deposit to the
entity’s input ports, isum and qsum. In each case, the function converts a
decimal value to 5-element bit vector with each bit representing a character
that maps to a character literal representing a logic state.

“Converting Data for Return to the HDL Simulator” on page 2-21 provides
a summary of the types of data conversions to consider when returning
data to the Incisive simulator.

2-32

Coding a MATLAB Component Function

Coding a MATLAB Component Function
This section discusses the syntax of a MATLAB component function and the
relationship of the function to its associated HDL design.

Function Definition and Parameters
The syntax of a MATLAB component function is

function [oport, tnext] = MyFunctionName(iport, tnow, portinfo)

The function returns the following outputs:

• oport — Structure that drives (by deposit) values onto signals connected to
output ports of the associated HDL design.

• tnext (optional) — Specifies the time at which the HDL simulator
schedules the next callback to MATLAB. tnext should be initialized to an
empty value ([]). If tnext is not subsequently updated, no new entries
are added to the simulation schedule. In that case, callback scheduling is
controlled by the matlabcp command.

For more information see “Controlling Callback Timing from a MATLAB
Test Bench or Component Function” on page 3-12.

It is strongly recommended that you initialize the function outputs to empty
values at the beginning of the function as in the following example:

tnext = [];
oport = struct();

The following parameters are passed to the function:

• iport — Structure that receives signal values from the input ports defined
for the associated HDL design at the time specified by tnow.

• tnow — Receives the simulation time at which the MATLAB function is
called. By default, time is represented in seconds. For more information see
“Controlling Callback Timing from a MATLAB Test Bench or Component
Function” on page 3-12.

2-33

2 Coding a Link for Cadence Incisive MATLAB Application

• portinfo — For the first call to the function only (at the start of the
simulation) , portinfo receives a structure whose fields describe the
ports defined for the associated HDL design. For each port, the portinfo
structure passes information such as the port’s type, direction, and size.
You can use the port information to create a generic MATLAB function that
operates differently depending on the port information supplied at startup.
For more information on port data, see “Gaining Access to and Applying
Port Information” on page 2-17.

For more information on using tnext and tnow for simulation scheduling, see
“Deciding on MATLAB Link Session Scheduling Options” on page 3-11.

Note The input/output arguments (iport and oport) for a MATLAB
component function are the reverse of the port arguments for a MATLAB test
bench function. Thus, the MATLAB component function returns signal data to
the outputs, and receives data from the inputs, of the associated HDL design.

The next section provides an example of how to use the parameters of a
MATLAB component function.

2-34

Placing a MATLAB Test Bench or Component Function on the MATLAB Search Path

Placing a MATLAB Test Bench or Component Function on
the MATLAB Search Path

The MATLAB function associated with an HDL design must be on the
MATLAB search path or reside in the current working directory. To verify
whether the function is accessible, use the MATLAB which function. The
following call to which checks whether the function MyVerilogFunction is on
the MATLAB search path:

>> which MyVerilogFunction
/work/incisive/MySym/MyVerilogFunction.m

If the specified function is on the search path, which displays the complete
path to the function’s M-file. If the function is not on the search path, which
informs you that the file was not found.

To add a MATLAB function to the MATLAB search path, open the Set
Path window by clicking File > Set Path, or use the addpath command.
Alternatively, for temporary access, you can change the MATLAB working
directory to a desired location with the cd command.

2-35

2 Coding a Link for Cadence Incisive MATLAB Application

2-36

3

Starting and Controlling
MATLAB Link Sessions

Overview (p. 3-3) Provides an overview of the steps for
starting and controlling a MATLAB
link session.

Checking the MATLAB Server’s
Link Status (p. 3-5)

Explains how to check the status of
the MATLAB server.

Starting the MATLAB Server (p. 3-7) Explains how to start the MATLAB
server.

Starting the HDL Simulator for Use
with MATLAB (p. 3-10)

Explains how to start the HDL
simulator for use with MATLAB.

Deciding on MATLAB Link Session
Scheduling Options (p. 3-11)

Describes different ways of
scheduling the invocations of a
MATLAB test bench or component
function.

Controlling Callback Timing from a
MATLAB Test Bench or Component
Function (p. 3-12)

Explains how to control callback
timing from a MATLAB test bench
or component function.

Initializing the HDL Simulator for a
MATLAB Link Session (p. 3-13)

Explains how to initialize the HDL
simulator for use with MATLAB as
a link session tool.

Applying Stimuli with the HDL
Simulator force Command (p. 3-18)

Explains how to apply MATLAB link
session stimuli with HDL simulator
force commands.

3 Starting and Controlling MATLAB Link Sessions

Running and Monitoring a MATLAB
Link Session (p. 3-20)

Explains how to run and monitor a
MATLAB link session.

Stopping a MATLAB Link Session
(p. 3-22)

Explains how to stop a MATLAB
link session.

3-2

Overview

Overview
Link for Cadence Incisive software offers flexibility in how you start and
control an HDL model test bench or component session with MATLAB. A
MATLAB link session is the application of a matlabtb, matlabtbeval, or
matlabcp function. A session can consist of a single function invocation, a
series of timed invocations, or invocations based on timing data returned by a
MATLAB function to the HDL simulator.

This chapter helps you determine what your application’s scheduling
requirements might be, explains how to start the most basic simulation, and
explains how to apply available scheduling mechanisms for finer levels of test
bench or component control.

To start and control the execution of a simulation in the MATLAB
environment, perform the following tasks:

1 Check the MATLAB server’s link status. (See “Checking the MATLAB
Server’s Link Status” on page 3-5.)

2 Start the MATLAB server. (See “Starting the MATLAB Server” on page
3-7.)

3 Launch the HDL simulator with the compiled and elaborated model for use
with MATLAB. (See “Starting the HDL Simulator for Use with MATLAB”
on page 3-10.)

4 Schedule invocations of the MATLAB test bench or component function.
(See “Deciding on MATLAB Link Session Scheduling Options” on page
3-11.)

5 Control callback timing from the MATLAB test bench or component
function. (See “Controlling Callback Timing from a MATLAB Test Bench or
Component Function” on page 3-12.)

6 Initialize the HDL simulator for use with MATLAB as a link session tool.
(See “Initializing the HDL Simulator for a MATLAB Link Session” on
page 3-13.)

7 Apply MATLAB link session stimuli. (See “Applying Stimuli with the HDL
Simulator force Command” on page 3-18.)

3-3

3 Starting and Controlling MATLAB Link Sessions

8 Run and monitor the MATLAB link session. (See “Running and Monitoring
a MATLAB Link Session” on page 3-20.)

9 Stop a MATLAB link session. (See “Stopping a MATLAB Link Session” on
page 3-22.)

Each of these steps is described in more detail in this chapter.

A complete example of starting and controlling a MATLAB component session
appears in the oscillator filter demo.

3-4

Checking the MATLAB Server’s Link Status

Checking the MATLAB Server’s Link Status
The first step to starting an HDL simulator and MATLAB link session is to
check the MATLAB server’s link status. Is the server running? If the server is
running, what mode of communication and, if applicable, what TCP/IP socket
port is the server using for its links? You can retrieve this information by using
the MATLAB function hdldaemon with the 'status' option. For example:

hdldaemon('status')

The function displays a message that indicates whether the server is running
and, if it is running, the number of connections it is handling. For example:

HDLDaemon socket server is running on port 4449 with 0 connections

If the server is not running, the message reads

HDLDaemon is NOT running

To determine the mode of communication and TCP/IP socket port in use,
assign the return value of the function call to a variable. For example:

x=hdldaemon('status')

HDLDaemon socket server is running on port 4449 with 0 connections

x =

comm: 'sockets'

connections: 0

ipc_id: '4449'

This function call indicates that the server is using TCP/IP socket
communication with socket port 4449 and is running with no connections. If a
shared memory link is in use, the value of comm is 'shared memory' and the
value of ipc_id is a file system name for the shared memory communication
channel. For example:

x=hdldaemon('status')
HDLDaemon shared memory server is running with 0 connections
x =

comm: 'shared memory'

3-5

3 Starting and Controlling MATLAB Link Sessions

connections: 0
ipc_id: [1x45 char]

3-6

Starting the MATLAB Server

Starting the MATLAB Server
Start the MATLAB server as follows:

1 Start MATLAB.

2 In the MATLAB Command Window, call the hdldaemon function with
property name/property value pairs that specify whether the Link for
Cadence Incisive interface is to

• Use shared memory or TCP/IP socket communication

• Return time values in seconds or as 64–bit integers

Use the following syntax:

hdldaemon('PropertyName', PropertyValue...)

The following table explains when and how to specify property
name/property value pairs.

Note The communication mode that you specify (shared memory or
TCP/IP sockets) must match what you specify for the communication mode
when you initialize the HDL simulator for use with a MATLAB with the
matlabtb or matlabtbeval HDL simulator Tcl command. In addition,
if you specify TCP/IP socket mode, the socket port that you specify with
this function and the HDL simulator Tcl command must match. For
more information on modes of communication, see “Choosing TCP/IP
Socket Ports” on page 1-18. For more information on establishing the
HDL simulator end of the communication link, see “Initializing the HDL
Simulator for a MATLAB Link Session” on page 3-13.

3-7

3 Starting and Controlling MATLAB Link Sessions

If Your Application Is
to...

Do the Following...

Operate in shared
memory mode

Omit the 'socket', tcp_spec property
name/property value pair. The interface
operates in shared memory mode by default.
You should use shared memory mode if your
application configuration consists of a single
system and uses a single communication
channel.

Operate in TCP/IP socket
mode, using a specific
TCP/IP socket port

Specify the 'socket', tcp_spec property
name and value pair. The tcp_spec can
be a socket port number or service name.
Examples of valid port specifications include
'4449', 4449, and MATLAB Service. For
information on choosing a TCP/IP socket
port, see “Choosing TCP/IP Socket Ports” on
page 1-18.

Operate in TCP/IP socket
mode, using a TCP/IP
socket that the operating
system identifies as
available

Specify 'socket', 0 or 'socket', '0'.

Return time values in
seconds (type double)

Specify 'time', 'sec' or omit the
parameter. This is the default time value
resolution.

Return 64-bit time values
(type int64)

Specify 'time', 'int64' .

The following function call starts the server in TCP/IP socket mode, using port
number 4449, with a time resolution of seconds (the default).

hdldaemon('socket', 4449)

You also can start the server from a script. Consider the following function
call sequence:

dstat = hdldaemon('socket', 0)

3-8

Starting the MATLAB Server

portnum = dstat.ipc_id

The first call to hdldaemon specifies that the server use TCP/IP communication
with a port number that the operating system identifies and returns
connection status information, including the assigned port number, to dstat.
The statement on the second line assigns the socket port number to portnum
for future reference.

For more information on modes of communication, see “Choosing TCP/IP
Socket Ports” on page 1-18. For more information on establishing the HDL
simulator end of the communication link, see “Initializing the HDL Simulator
for a MATLAB Link Session” on page 3-13.

3-9

3 Starting and Controlling MATLAB Link Sessions

Starting the HDL Simulator for Use with MATLAB
After you compile and elaborate your model, start the HDL simulator from
outside of MATLAB by calling the HDL simulator Tcl command hdlsimmatlab
from inside the HDL simulator.

First, in the OS shell type:

% simvision -input tclscript

where tclscript is the name of the Tcl startup script you created when
setting up Link for Cadence Incisive software. See “Setting Up Link for
Cadence Incisive Software for Use with the Incisive Simulator on the Same
Machine as MATLAB” on page 1-23.

Next, at the SimVision prompt type:

SimVision> hdlsimmatlab -gui component_instance

where component_instance is the instance of the component you created for
this particular link session.

3-10

Deciding on MATLAB Link Session Scheduling Options

Deciding on MATLAB Link Session Scheduling Options
A MATLAB link session is the application of a matlabtb, matlabtbeval, or
matlabcp function. By default, Link for Cadence Incisive software invokes
a MATLAB test bench or component function once (when time equals 0).
If you want to apply more control and execute the MATLAB function more
than once, decide on scheduling options that specify when and how often
the Link for Cadence Incisive software is to invoke the relevant MATLAB
function. Depending on your choices, you may need to modify the function or
specify specific arguments when you initiate a MATLAB link session with the
matlabtb, matlabtbeval, or matlabcp command.

You can schedule a MATLAB simulation function to execute

• At a time that the MATLAB function passes to the HDL simulator with
the tnext input parameter

• Based on a time specification that can include discrete time values, repeat
intervals, and a stop time

• When a specified signal experiences a rising edge — changes from '0' to
'1'

• When a specified signal experiences a falling edge — changes from '1' to
'0'

• Based on a sensitivity list — when a specified signal changes state

Decide on a combination of options that best meet your test bench or
component application requirements. For details on using the tnext
parameter, see “Controlling Callback Timing from a MATLAB Test Bench
or Component Function” on page 3-12. For information on setting other
scheduling parameters, see “Initializing the HDL Simulator for a MATLAB
Link Session” on page 3-13.

3-11

3 Starting and Controlling MATLAB Link Sessions

Controlling Callback Timing from a MATLAB Test Bench or
Component Function

You can control the callback timing of a MATLAB test bench or component
function by using that function’s tnext parameter. This parameter passes a
time value to the HDL simulator, which gets added to the MATLAB function’s
simulation schedule. If the function returns a null value ([]) , no new entries
are added to the schedule.

You can set the value of tnext to a value of type double or int64. The
following table explains how the interface converts each type of data for use
in the HDL simulator environment.

Time Representations for tnext Parameter

If You Specify a... The Interface...

double value Converts the value to seconds. For
example, the following value converts
to the simulation time nearest to 1
nanosecond as a multiple of the current
HDL simulator time resolution.

tnext = 1e-9

int64 value Converts to an integer multiple of the
current HDL simulator time resolution
limit. For example, the following value
converts to 100 units of the current time
resolution.

tnext=int64(100)

Note The tnext parameter represents time from the start of the simulation.
Therefore, tnext should always be greater than tnow.

3-12

Initializing the HDL Simulator for a MATLAB Link Session

Initializing the HDL Simulator for a MATLAB Link Session
After you decide on scheduling options, you are ready to initialize the HDL
simulator for a specific MATLAB link session. You initialize the HDL
simulator for a cosimulation session with the matlabtb, matlabtbeval, or
matlabcp command, which do the following:

• Identify the instance of a module in the HDL model being simulated and
identified with a test bench or component

• Define the communication link between the HDL simulator and MATLAB

• Specify a callback to a MATLAB function that executes in the context of
MATLAB on behalf of the instance under simulation in the HDL simulator

In addition, matlabtb commands can include parameters that control when
the MATLAB function executes.

You must specify at least one instance of a VHDL entity or Verilog module
in your HDL model. By default, the command establishes a shared memory
communication link and attaches the specified instance to a MATLAB
function that has the same name as the instance. For example, if the instance
is hdlsimrand, the command links the instance with the MATLAB function
hdlsimrand in file hdlsimrand.m. Alternatively, you can specify a different
function name with the option -mfunc.

To apply TCP/IP socket communication, specify the command with the
-socket option and a TCP/IP specification. For more information on choosing
TCP/IP socket ports, see “Choosing TCP/IP Socket Ports” on page 1-18.

Note The communication mode and, if appropriate, the TCP/IP specification
that you specify with the matlabtb or matlabtbeval command must match
what you specify for the communication mode when you call the hdldaemon
function in MATLAB.

For more information on modes of communication, see “Modes of
Communication” on page 1-9. For information on choosing socket ports,
see “Choosing TCP/IP Socket Ports” on page 1-18. For more information

3-13

3 Starting and Controlling MATLAB Link Sessions

on starting the MATLAB end of the communication link, see “Starting the
MATLAB Server” on page 3-7.

The matlabtbeval command executes the MATLAB function immediately,
while matlabtb provides several options for scheduling MATLAB function
execution. The following table lists the various scheduling options.

Note For time-based parameters, you can specify any standard time units
(ns, us, and so on). If you do not specify units, the command treats the time
value as a value of HDL simulation ticks.

For more about ticks and HDL time resolution, see “Representation of
Simulation Time” on page 4-8.

Simulation Scheduling Options

To Specify
MATLAB Function
Execution...

Include... Where...

At explicit times time[, ...] time represents one of n time values, past
time 0, at which the MATLAB function
executes.

For example:

matlabtb entity 10 ns, 10 ms,
10 s -mfunc function

The MATLAB function executes when
time equals 0 and then 10 nanoseconds,
10 milliseconds, and 10 seconds from time
zero.

3-14

Initializing the HDL Simulator for a MATLAB Link Session

Simulation Scheduling Options (Continued)

To Specify
MATLAB Function
Execution...

Include... Where...

At a combination
of explicit times
and repeatedly
at an interval

Stop the executions
after x amount of time

time[, ...] -repeat n

time[, ...] n -repeat
x -cancel

time represents a time value at which
the MATLAB function executes and the
n specified with -repeat represents
an interval between MATLAB function
executions.

For example:

matlabtb entity 5 ns -repeat
10 ns -mfunc function

The MATLAB function executes at time
equals 0 ns, 5 ns, 15 ns, 25 ns, and so
on. This repetition continues indefinitely,
unless cancel with x time value is used.

For example:

matlabtb entity 5 ns -repeat 10
ns -cancel 1 us -mfunc function

This cancellation stops the execution
after 100 microseconds.

3-15

3 Starting and Controlling MATLAB Link Sessions

Simulation Scheduling Options (Continued)

To Specify
MATLAB Function
Execution...

Include... Where...

When a specific signal
experiences a rising or
falling edge

-rising signal[, ...]

-falling signal[, ...]

signal represents the pathname of a
signal defined as a logic type.

On change of signal
values (sensitivity list)

-sensitivity signal[, ...] signal represents the pathname of a
signal defined as any type. If the value
of one or more signals in the specified
list changes, the interface invokes the
MATLAB function.

Note Use of this option for INOUT ports
can result in double calls.

Note When specifying signals with the -rising, -falling, and
-sensitivity options, specify them in full pathname format. If you do not
specify a full pathname, the command applies the HDL simulator rules to
resolve signal specifications.

The following matlabtb command:

ncsim> matlabtb hdlsimrand -rising hdlsimrand.clk,
-socket 4449

links an instance of the module hdlsimrand to function hdlsimrand.m,
which executes within the context of MATLAB based on specified timing
parameters. In this case, the MATLAB function is called when the signal
hdlsimrand.clk experiences a rising edge.

Arguments in the command line specify the following:

3-16

Initializing the HDL Simulator for a MATLAB Link Session

hdlsimrand That an instance of the module hdlsimrand
be linked with the MATLAB function
hdlsimrand.

-rising hdlsimrand.clk That the MATLAB function hdlsimrand
be called when the signal hdlsimrand.clk
changes from '0' to '1'.

-socket 4449 That TCP/IP socket port 4449 be used
to establish a communication link with
MATLAB.

To verify that the matlabtb or matlabtbeval command established a
connection, change your input focus to MATLAB and call the function
hdldaemon with the 'status' option as follows:

hdldaemon('status')

If a connection exists, the function returns the message

HDLDaemon socket server is running on port 4449 with 1 connection

3-17

3 Starting and Controlling MATLAB Link Sessions

Applying Stimuli with the HDL Simulator force Command
After you establish a link between the HDL simulator and MATLAB, you
are ready to apply stimuli to the MATLAB link session environment. One
way of applying stimuli is through the iport return parameter of the linked
MATLAB function. This parameter drives signal values by deposit. Another
option is to issue force commands in the HDL simulator main window.

For example, the following sequence of force commands:

force osc_top.clk_enable 1 -after 0ns
force osc_top.reset 0 -after 0ns 1 -after 40ns 0 -after 120ns
force osc_top.clk 1 -after 0ns 0 -after 40ns -repeat 80ns

can be entered at the ncsim prompt or in the Tcl pane of the HDL cosim block
(in the presimulation entry box).

These commands drive

• The clk signal to 0 at 0 nanoseconds after the current simulation time and
to 1 at 5 nanoseconds after the current HDL simulator simulation time.
This cycle repeats starting at 10 nanoseconds after the current simulation
time, causing transitions from 1 to 0 and 0 to 1 every 5 nanoseconds, as
the following diagram shows.

� 8
8

7

3 78 68 98

111

• The clk_en signal to 1 at 0 nanoseconds after the current simulation time.

• The reset signal to 0 at 0 nanoseconds after the current simulation time.

3-18

Applying Stimuli with the HDL Simulator force Command

Note You should consider using HDL to code clock signals as force is a lower
performance solution in the current version of Cadence Incisive simulators.

The following are ways that a periodic force might be introduced:

• Via the Clock pane in the HDL Cosim block

• Via pre/post Tcl commands in the HDL Cosim block

• Via a user-input Tcl script to ncsim

All three approaches may lead to performance degradation.

3-19

3 Starting and Controlling MATLAB Link Sessions

Running and Monitoring a MATLAB Link Session
Start a MATLAB link session from the HDL simulator. The HDL simulator
offers a number of options for running a simulation to debug, analyze, or verify
an HDL model. The following sequence is typical for running a simulation
interactively from the main HDL simulator window:

1 Start the simulation by entering the HDL simulator run command or
selecting the Simulation > Run option in the SimVision console of the
Incisive simulator.

The run command offers a variety of options for applying control over how
a simulation runs. For example, you can specify that a simulation run for a
number of time steps. Alternatively, you can specify the -all option, which
causes the simulation to run forever, until the simulation hits a breakpoint,
or a breakpoint event occurs.

The following command instructs the HDL simulator to run the loaded
simulation for 50000 time steps:

run 50000

2 Set breakpoints in the HDL and MATLAB code to verify and analyze
simulation progress and correctness.

The following HDL simulator command sets a breakpoint at line 50 in the
Verilog file hdlsimrand.v:

bp hdlsimrand.v 50

3 Step through the simulation and examine values.

4 When you block execution of the MATLAB function, the HDL simulator
also blocks and remains blocked until you clear all breakpoints in the
function’s M-code.

5 Resume the simulation, as needed.

For more information on the HDL simulator and MATLAB debugging
features, see the appropriate HDL simulator and MATLAB online help or
documentation.

3-20

Running and Monitoring a MATLAB Link Session

Note When you restart a simulation in Simulink, Simulink starts at time
0, but ModelSim continues from where the last simulation was stopped. To
synchronize the time axis, issue the following Tcl command in ModelSim
before restarting the cosimulation:

restart -f

3-21

3 Starting and Controlling MATLAB Link Sessions

Stopping a MATLAB Link Session
When you are ready to stop a MATLAB link session, it is best to do so in
an orderly way to avoid possible corruption of files and to ensure that all
application tasks shut down appropriately. You should stop a session in the
following sequence:

1 Make the HDL simulator your active window, if your input focus was not
already set to that application.

2 Halt the simulation by selecting the Simulation > Stop option on the
main window.

3 Exit the HDL simulator, if you are finished with the application.

4 Quit MATLAB, if you are finished with the application. If you want to
shut down the server manually, stop the server by calling hdldaemon with
the 'kill' option:

hdldaemon('kill')

For more information on closing Incisive simulator sessions, see the Incisive
simulator documentation.

3-22

4

Modeling and Verifying an
HDL Design with Simulink

Overview (p. 4-3) Provides an overview of the process
for integrating Link for Cadence
Incisive blocks into a Simulink
design.

Creating a Hardware Model Design
in Simulink (p. 4-5)

Lists questions to think about as
you decide to include Simulink in an
EDA solution.

Handling Signal Values Across
Simulators (p. 4-7)

Explains how Link for Cadence
Incisive software addresses
the differences in treatment of
simulation time in the HDL
simulator and Simulink.

Configuring Simulink for HDL
Models (p. 4-18)

Gives suggestions for configuring
Simulink more optimally for use
with Link for Cadence Incisive
blocks.

Adding the HDL Representation of a
Model Component into a Simulink
Model (p. 4-19)

Explains how to integrate the HDL
representation of a model component
into a Simulink model with Link for
Cadence Incisive blocks.

Configuring an HDL Cosimulation
Block (p. 4-20)

Explains how to use a Simulink
block parameters dialog to configure
Link for Cadence Incisive blocks.

4 Modeling and Verifying an HDL Design with Simulink

Running and Testing a Cosimulation
Model in Simulink (p. 4-41)

Explains how to start a cosimulation
model in Simulink. This section also
explains how to reset clocks and
restart the HDL simulator during
testing.

Using Frame-Based Processing in
Cosimulation (p. 4-42)

Explains how to improve the
performance of your cosimulation by
using frame-based signals.

Using a Value Change Dump File for
Design Verification (p. 4-44)

Explains how to use the To VCD
File block to generate Value Change
Dump files.

4-2

Overview

Overview
HDL simulators, Simulink, and Simulink blocksets provide a powerful
modeling and cosimulation environment for Electronic Design Automation
(EDA). This chapter explains how to set up a cosimulation environment in
Simulink that includes HDL models designed and simulated with Incisive
simulators.

Link for Cadence Incisive blocks link hardware components that are
concurrently simulating in the Incisive simulator to the rest of a Simulink
model.

Two potential use cases follow:

• A single HDL Cosimulation block fits into the framework of a larger
system-oriented Simulink model.

• The Simulink model is a collection of HDL Cosimulation blocks, each
representing a specific hardware component.

The following process shows the typical workflow for integrating HDL
Cosimulation blocks into a Simulink design that includes one or more
hardware components:

1 Design your application model in Simulink. One or more components of the
model can represent hardware that you intend to describe with HDL.

2 Run and test the model design in Simulink.

3 Verify that the model runs as expected. If it does not, repeat steps 1 and 2
to rework and fine tune the design.

4 Use the HDL simulator to simulate a discrete model component of the
design coded in HDL.

5 Integrate the HDL representation of the model component into the
Simulink model as an HDL Cosimulation block.

6 Configure the HDL Cosimulation block. The block parameters dialog
box includes tabs for configuring port, communication, clock, and Tool
Command Language (Tcl) commands.

4-3

4 Modeling and Verifying an HDL Design with Simulink

7 Run and test the revised model design in Simulink.

8 Verify that the revised model runs as expected. If it does not,

a Modify the HDL code and simulate it in the HDL simulator.

b Determine whether you need to re-configure the HDL Cosimulation
block. If you do, repeat steps 6 to 8. If you do not, repeat steps 7 and 8.

9 Determine whether you need to replace another component of the Simulink
model with an HDL Cosimulation block. If you do, go to step 4.

10 Consider using a To VCD File block to verify cosimulation results.

4-4

Creating a Hardware Model Design in Simulink

Creating a Hardware Model Design in Simulink
After you decide to include Simulink as part of your EDA flow, think about
its role:

• Will you start by developing an HDL application, using an HDL simulator,
and possibly MATLAB, and then test the results at a system level in
Simulink?

• Will you start with a system-level model in Simulink with “black box
hardware components” and, after the model runs as expected, replace the
black boxes with HDL Cosimulation blocks?

• What other Simulink blocksets might apply to your application? Blocksets
of particular interest for EDA applications include the Communications
Blockset, Signal Processing Blockset, and Simulink Fixed Point.

• Will you set up HDL Cosimulation blocks as a subsystem in your model?

• What sample times will be used in the model? Will any sample times need
to be scaled?

• Will you generate a Value Change Dump (VCD) file?

After you answer these questions, use Simulink to build your simulation
environment.

This figure shows a sample Simulink model that includes an HDL
Cosimulation block.

4-5

4 Modeling and Verifying an HDL Design with Simulink

The HDL Cosimulation block (labeled HDL Manchester Receiver) models a
Manchester receiver that is coded in VHDL and Verilog. Other blocks and
subsystems in the model include the following:

• Frequency Error Range block, Frequency Error Slider block, and Phase
Event block

• Manchester encoder subsystem

• Data alignment subsystem

• Inphase/Quadrature (I/Q) capture subsystem

• Error Rate Calculation block from the Communications Blockset

• Bit Errors block

• Data Scope block

• Discrete-Time Scatter Plot Scope block from the Communications Blockset

For information on getting started with Simulink, see the Simulink online
help or documentation.

4-6

Handling Signal Values Across Simulators

Handling Signal Values Across Simulators
The Link for Cadence Incisive HDL Cosimulation block serves as a bridge
between the Simulink and HDL simulators. The block represents an HDL
component model within Simulink. Using the block, Simulink writes signals
to and reads signals from the HDL model under simulation in the HDL
simulator. Signal exchange between the two simulators occurs at regularly
scheduled time steps defined by the Simulink sample time.

As you develop a Link for Cadence Incisive cosimulation application, you
should be familiar with how signal values are handled across simulators. See
the following topics:

• “How Simulink Drives Cosimulation Signals” on page 4-7

• “Representation of Simulation Time” on page 4-8

• “Handling Multirate Signals” on page 4-15

• “Clock Signal Latency” on page 4-16

• “Block Simulation Latency” on page 4-16

How Simulink Drives Cosimulation Signals
Although you can connect the output ports of an HDL Cosimulation block to
any signal in an HDL model hierarchy, you must use some caution when
connecting signals to input ports. Simulink uses the deposit method of
changing signal values to drive input to a cosimulation block. The deposit
method is the weakest method of forcing an HDL signal and can produce
unexpected or undesired results when a signal is driven by multiple sources.
To avoid such conditions, you should attach the input ports to signals that are
not driven, such as the input ports of a top-level HDL model.

If you need to use a signal that has multiple drivers and it is resolved (for
example, it is of VHDL type STD_LOGIC), Simulink applies the resolution
function at each time step defined by the signal’s Simulink sample rate.
Depending on the other drivers, the Simulink value may or may not get
applied. Furthermore, Simulink has no control over signal changes that occur
between its sample times.

4-7

4 Modeling and Verifying an HDL Design with Simulink

Note You must make sure that signals being used in cosimulation have
read/write access (this is done through the HDL simulator – see product
documentation for details). This rule applies to all signals on the Ports,
Clocks, and Tcl panes.

Representation of Simulation Time
The representation of simulation time differs significantly between the HDL
simulator and Simulink.

In the HDL simulator, the unit of simulation time is referred to as a tick.
The duration of a tick is defined by the HDL simulator resolution limit. The
default resolution limit is 1 ns.

To determine the current HDL simulator resolution limit, enter echo
$timescale at the HDL simulator prompt. See the HDL simulator
documentation for the application you are using for further information.

Simulink maintains simulation time as a double-precision value scaled to
seconds. This representation accommodates modeling of both continuous
and discrete systems.

The relationship between Simulink and the HDL simulator timing affects
the following aspects of simulation:

• Total simulation time

• Input port sample times

• Output port sample times

• Clock periods

During a simulation run, Simulink communicates the current simulation
time to the HDL simulator at each intermediate step. An intermediate step
corresponds to a Simulink sample time hit. Upon each intermediate step, new
values are applied at input ports, or output ports are modified. To bring the
HDL simulator up-to-date with Simulink during cosimulation, Simulink time
must be converted to the HDL simulator time (ticks) and the HDL simulator
must run for the computed number of ticks.

4-8

Handling Signal Values Across Simulators

The Link for Cadence Incisive software provides controls that let you configure
the timing relationship between the Incisive simulator and Simulink and
avoid timing errors caused by differences in timing representation.

Defining the Simulink and HDL Simulator Timing Relationship
The Timescales pane of the HDL Cosimulation block parameters dialog
box lets you choose an optimal timing relationship between Simulink and
the HDL simulator. The following figure shows the default settings of the
Timescales pane.

The Timescales pane defines a correspondence between one second of
Simulink time and some quantity of HDL simulator time. This quantity of
HDL simulator time can be expressed in one of the following ways:

• In relative terms (i.e., as some number of HDL simulator ticks). In this
case, the cosimulation is said to operate in relative timing mode. Relative
timing mode is the default.

• In absolute units (such as milliseconds or nanoseconds). In this case, the
cosimulation is said to operate in absolute timing mode.

4-9

4 Modeling and Verifying an HDL Design with Simulink

Note In both timing modes, all sample times and clock periods in Simulink
must be an integer multiple of the resolution units. An error occurs if they
are not.

The following sections discuss these two timing modes.

Relative Timing Mode
Relative timing mode lets you define the timing relationship between
Simulink and the HDL simulator in terms of relative time units and a
scale factor, e.g., One second in Simulink corresponds to N ticks in the HDL
simulator, where N is a scale factor.

This correspondence holds regardless of the HDL simulator timing resolution.

To configure relative timing mode for a cosimulation:

1 Click the Timescales tab of the HDL Cosimulation block parameters
dialog.

2 Select Tick (default value) from the list on the right.

3 Enter a scale factor in the edit box on the left. The default scale factor is 1.

For example, in the following figure, the Timescales pane is configured for
a relative timing correspondence of 10 HDL simulator ticks to 1 Simulink
second.

4 Click Apply to commit your changes.

Operation of Relative Timing Mode. By default, the HDL Cosimulation
block is configured for relative mode, with a scale factor of 1. Thus, 1 Simulink
second corresponds to 1 tick in the HDL simulator. In the default case:

4-10

Handling Signal Values Across Simulators

• If the total simulation time in Simulink is specified as N seconds, then the
HDL simulation runs for exactly N ticks (i.e., N ns at the default resolution
limit).

• Similarly, if Simulink computes the sample time of an HDL Cosimulation
block input port as Tsi seconds, new values are deposited on the HDL input
port at exact multiples of Tsi ticks. If an output port has an explicitly
specified sample time of Tso seconds, values are read from the HDL
simulator at multiples of Tso ticks.

• Clocks operate in a similar fashion. Where a clock has a period of T seconds:

- If T is even, the clock signal is forced in the HDL simulator as an input
signal that stays low for T/2 ticks and stays high for T/2 ticks.

- If T is odd, the clock signal is forced in the HDL simulator as an input
signal that stays low for T/2 ticks and stays high for (T/2) + 1 ticks.

Note Simulink requires such clocks to have a period of at least 2 resolution
units (ticks). Simulink throws an error if specified value of T is less than
2 ticks.

To understand how relative timing mode operates, review cosimulation results
from the following example model.

4-11

4 Modeling and Verifying an HDL Design with Simulink

The model contains an HDL Cosimulation block (labeled HDL_Cosimulation1)
simulating an 8-bit inverter that is enabled by an explicit clock. The inverter
has a single input and a single output. The following lists the Verilog code
for the inverter:

module inverter_clock_vl(sin, sout,clk);

input [7:0] sin;
output [7:0] sout;
input clk;
reg [7:0] sout;

always @(posedge clk)
sout <= ! (sin);

endmodule

A cosimulation of this model might have the following settings:

• Simulation parameters in Simulink

- Timescales parameters: 1 Simulink second = 10 HDL simulator ticks

- Total simulation time: 30 s

- Input port (inverter_clock_vl.sin) sample time: N/A

- Output port (inverter_clock_vl.sout) sample time: 1 s

- Clock (inverter_clock_vl.clk) period: 5 s

• HDL simulator resolution limit: 1 ns

The previous example was excerpted from the Link for Cadence Incisive
Inverter tutorial. For more information, see Link for Cadence Incisive demos.

Absolute Timing Mode
Absolute timing mode lets you define the timing relationship between
Simulink and the HDL simulator in terms of absolute time units and a scale
factor, e.g., One second in Simulink corresponds to (N * Tu) seconds in the
HDL simulator, where Tu is an absolute time unit (e.g., ms, ns, etc.) and N
is a scale factor.

4-12

Handling Signal Values Across Simulators

To configure the Timescales parameters for absolute timing mode, you select
a unit of absolute time, rather than Tick.

To configure absolute timing mode for a cosimulation:

1 Select the Timescales tab of the HDL Cosimulation block parameters
dialog.

2 Select a unit of absolute time from the list on the right. Available units
are fs, ps, ns, us, ms, and s.

3 Enter a scale factor in the edit box on the left. The default scale factor is 1.

For example, in the figure below, the Timescales pane is configured for an
absolute timing correspondence of 1 HDL simulator second to 1 Simulink
second.

4 Click Apply to commit your changes.

In absolute timing mode, all sample times and clock periods in Simulink are
quantized to HDL simulator ticks. The following pseudocode illustrates the
conversion:

qtInTicks = (tInSecs * (tScale / tRL))

where

• qtInTicks is the integer multiple of HDL simulator time in ticks (minimum
2).

• tInSecs is the Simulink time in seconds.

• tScale is the time scale setting (unit and scale factor) chosen in the
Timescales pane of the HDL Cosimulation block.

• tRL is the HDL simulator resolution limit.

4-13

4 Modeling and Verifying an HDL Design with Simulink

For example, given a Timescales pane setting of 1 s and an HDL simulator
resolution limit of 1 ns, an output port sample time of 12 ns is converted to
ticks as follows:

qtInTicks = (12ns * (1s / 1ns)) = 12

Operation of Absolute Timing Mode. To understand the operation of
absolute timing mode, review the example model discussed in “Representation
of Simulation Time” on page 4-8. Suppose that the model is re-configured as
follows:

• Simulation parameters in Simulink

- Timescale parameters: 1 s of Simulink time corresponds to 1 s of HDL
simulator time.

- Total simulation time: 60e-9 s (60ns)

- Input port (inverter.inport) sample time: 24e-9 s (24 ns)

- Output port (inverter.outport) sample time: 12e-9 s (12 ns)

- Clock (inverter.clk) period: 10e-9 s (10 ns)

• HDL simulator resolution limit: 1 ns

Given these simulation parameters, Simulink cosimulates with the HDL
simulator for 60 ns. Inputs are sampled at a intervals of 24 ns and outputs
are updated at intervals of 12 ns. Clocks are driven at intervals of 10 ns.

Timing Mode Usage Restrictions
The following restrictions apply to the use of absolute and relative timing
modes:

• All HDL Cosimulation blocks in the model that communicate with the
same single instance of the HDL simulator must all be configured either in
relative timing mode or in absolute timing mode.

• When multiple HDL Cosimulation blocks in a model are communicating
with a single instance of the HDL simulator, all HDL Cosimulation blocks
must have the equivalent Timescales pane settings.

4-14

Handling Signal Values Across Simulators

• If you change the Timescales pane settings in a HDL Cosimulation
block between consecutive cosimulation runs, you must restart the HDL
simulator.

Setting HDL Cosimulation Block Port Sample Times
In general, Simulink handles the sample time for the ports of an HDL
Cosimulation block as follows:

• If an input port is connected to a signal that has an explicit sample time,
based on forward propagation, Simulink applies that rate to that input port.

• If an input port is connected to a signal that does not have an explicit sample
time, Simulink assigns a sample time that is equal to the least common
multiple (LCM) of all identified input port sample times for the model.

• After Simulink sets the input port sample periods, it applies user-specified
output sample times to all output ports. Sample times must be explicitly
defined for all output ports.

If you are developing a model for cosimulation in relative timing mode,
consider the following sample time guidelines:

• Specify the output sample time for an HDL Cosimulation block as an
integer multiple of the resolution limit defined in the HDL simulator. Use
the HDL simulator command echo $timescale to check the resolution
limit of the loaded model.

• Specify the Simulink model’s start and stop time values (see the Solver
pane of the Simulink Configuration Parameters dialog box) as integers.
Start time equals a multiple of all sample/frame rates.

• Use the Simulink Zero-Order Hold block to apply a zero-order hold (ZOH)
on continuous signals that are driven into an HDL Cosimulation block.

Handling Multirate Signals
Link for Cadence Incisive software supports the use of multirate signals,
signals that are sampled or updated at different rates, in a single HDL
Cosimulation block. An HDL Cosimulation block exchanges data for each
signal at the Simulink sample rate for that signal. For input signals, a HDL
Cosimulation block accepts and honors all signal rates.

4-15

4 Modeling and Verifying an HDL Design with Simulink

The HDL Cosimulation block also lets you specify an independent sample
time for each output port. You must explicitly set the sample time for each
output port, or accept the default. This explicit setting lets you control the
rate at which Simulink updates an output port by reading the corresponding
signal from the HDL simulator.

Clock Signal Latency
In an HDL simulator, it is not possible to guarantee the order in which clock
signals (rising-edge or falling-edge) defined in the HDL Cosimulation block
are applied, relative to the data inputs driven by these clocks. Therefore, it is
possible that during a cosimulation, race conditions could develop between a
clock and the data inputs associated with the clock.

To avoid such race conditions, Link for Cadence Incisive software delays all
such clocks by ½ clock period, in effect inverting the sense of the rising or
falling edge. The delay provides a setup and hold time for input data, ensuring
that data inputs are always applied before the driving clock edge is applied.
For example, in the case of a rising-edge clock, inputs are applied first, and ½
clock period later, the rising edge of the clock is applied.

Where the Simulink sample time is even, the clock delay is exactly ½ period.
For odd Simulink sample times, the ½ period delay is approximated as closely
as possible. While this apparent inversion or delay by ½ period of the active
edge of the clock can be confusing, it enables cosimulation to work correctly
without race conditions and without requiring separately specified setup
and hold times for the data.

Block Simulation Latency
Simulink and Link for Cadence Incisive cosimulation blocks supplement the
hardware simulator environment, rather than operate as part of it. During
cosimulation, Simulink does not participate in HDL simulator delta-time
iteration. From the Simulink perspective, all signal drives (reads) occur
during a single delta-time cycle. For this reason, and due to fundamental
differences between HDL simulators and Simulink with regard to use and
treatment of simulation time, some degree of latency is introduced when you
use Link for Cadence Incisive cosimulation blocks. The latency is a time lag
that occurs between when Simulink initiates the deposit of a signal and when
the effect of the deposit is visible on cosimulation block output.

4-16

Handling Signal Values Across Simulators

As the following figure shows, Simulink cosimulation block input affects signal
values just after the current HDL simulator time step (t+δ) and block output
reflects signal values just before the current HDL simulator step time (t-δ) .

Regardless of whether your HDL code is specified with latency, the
cosimulation block has a minimum latency that is equivalent to the
cosimulation block’s output sample time. For large sample times, the delay
can appear to be quite long, but this apparent length is because of the
cosimulation block, which exchanges data with the HDL simulator at the
block’s output sample time only. This condition may be reasonable for a
cosimulation block that models a device that operates on a clock edge only,
such as a register-based device. For cosimulation blocks that contain pure
combinatorial paths, however, you may need to adjust the sample time to
achieve simulation performance required for circuit analysis.

For cosimulation blocks that model combinatorial circuits, you may want to
experiment with a faster sample frequency for output ports. Although this
type of parameter tuning can increase simulation performance, it can also
make a model more difficult to debug. For example, you may need to adjust
the output sample time for each cosimulation block.

4-17

4 Modeling and Verifying an HDL Design with Simulink

Configuring Simulink for HDL Models
When you create a Simulink model that includes one or more Link for
Cadence Incisive blocks, you might want to adjust certain Simulink parameter
settings to best meet the needs of HDL modeling. For example, you might
want to adjust the value of the Stop time parameter in the Solver pane of
the Configuration Parameters dialog box.

You can adjust the parameters individually via the GUI. These are some of
the default settings you might expect to use in cosimulation:

Parameter Default Setting

'SingleTaskRateTransMsg' 'error'

'Solver' 'fixedstepdiscrete'

'SolverMode' 'singletasking'

'StartTime' '0.0'

'StopTime' 'inf'

'FixedStep' 'auto'

'SaveTime' 'off'

'SaveOutput' 'off'

'AlgebraicLoopMsg' 'error'

The default settings for 'SaveTime' and 'SaveOutput' improve simulation
performance.

4-18

Adding the HDL Representation of a Model Component into a Simulink Model

Adding the HDL Representation of a Model Component
into a Simulink Model

After you code one of your model’s components in Verilog or VHDL and
simulate it in the Incisive simulator environment, integrate the HDL
representation into your Simulink model as an HDL Cosimulation block:

1 Open your Simulink model, if it is not already open.

2 Delete the model component that the HDL Cosimulation block is to replace.

3 In the Simulink Library Browser, click the Link for Cadence Incisive
library. The browser displays the following block icons.

HDL
Cosimulation

Block that has at least one input
port and one output port.

To VCD File Generates a Value Change Dump
(VCD) file. For information on
using this block, see “Using a
Value Change Dump File for
Design Verification” on page 4-44.

4 Copy the HDL Cosimulation block icon from the Library Browser to your
model. Simulink creates a link to the block at the point where you drop
the block icon.

5 Connect any HDL Cosimulation block ports to appropriate blocks in your
Simulink model. To model a sink device, configure the block with inputs
only. To model a source device, configure the block with outputs only.

4-19

4 Modeling and Verifying an HDL Design with Simulink

Configuring an HDL Cosimulation Block
You configure an HDL Cosimulation block by specifying values for parameters
in a block parameters dialog. The dialog box consists of four tabbed panes that
specify the following:

• Ports — Block input and output ports that correspond to signals, including
internal signals, of your HDL design, and an output sample time

• Connection — Type of communication and communication settings to be
used for exchanging data between simulators

• Timescales — Timing relationship between Simulink and the Link for
Cadence Incisive interface

• Clocks — Rising-edge and falling-edge clocks to apply to your model

• Tcl — Tcl commands to run before and after a simulation

The following sections help you identify what you need to configure, how to
open the Block Parameters dialog box, and how to configure each pane:

• “What Are Your HDL Cosimulation Block Requirements?” on page 4-20

• “Opening the Block Parameters Dialog Box” on page 4-23

• “Mapping HDL Signals to Block Ports” on page 4-23

• “Specifying Data Types for Output Ports” on page 4-28

• “Configuring the Simulink and Incisive Simulator Timing Relationship”
on page 4-30

• “Configuring the Communication Link” on page 4-32

• “Creating Optional Clocks” on page 4-34

• “Executing Tcl Commands Before and After Cosimulation” on page 4-37

• “Applying Your Block Parameters Configuration Settings” on page 4-40

What Are Your HDL Cosimulation Block
Requirements?
Before you start to configure an HDL Cosimulation block, review the following
checklist. The checklist helps you identify the parameters you need to set.

4-20

Configuring an HDL Cosimulation Block

If your answer to a question is something other than “no,” go to the topic
listed in the second column of the table for information on how to adjust the
parameter setting to meet your block requirements.

HDL Cosimulation Block Requirements Checklist

Requirement For More Information, See...

Ports

Does the HDL model you are mapping to Simulink
receive signals on input ports? If so, what are the input
ports?

“Mapping HDL Signals to Block
Ports” on page 4-23

Does the HDL model you are mapping to Simulink
transmit signals to output ports? If so, what are the
output ports?

“Mapping HDL Signals to Block
Ports” on page 4-23

If the block is modeling an input and output device, do
you want to specify explicit sample times for output
ports?

“Mapping HDL Signals to Block
Ports” on page 4-23

If the block is modeling an input and output device,
do you want to specify explicit fixed point data types
for output ports? By default the data types are either
inherited from the signals connected to the HDL
Cosimulation block output ports or derived from the
HDL model.

“Specifying Data Types for Output
Ports” on page 4-28

If the block is block is modeling a source device, do you
want to specify an output sample time other than two
clock ticks? If you do not specify an input port, the block
uses a default sample time of two clock ticks.

“Mapping HDL Signals to Block
Ports” on page 4-23

Timing

What is the optimal timing relationship between
Simulink and the Incisive simulator for your
cosimulation?

“Representation of Simulation
Time” on page 4-8

Do you need to specify a relative (Simulink seconds
corresponding to Incisive simulator ticks) timing
relationship between Simulink and the Incisive
simulator?

“Configuring the Simulink
and Incisive Simulator Timing
Relationship” on page 4-30

4-21

4 Modeling and Verifying an HDL Design with Simulink

HDL Cosimulation Block Requirements Checklist (Continued)

Requirement For More Information, See...

Do you need to specify an absolute (Simulink seconds
corresponding to Incisive simulator absolute time units)
timing relationship between Simulink and the Incisive
simulator?

“Configuring the Simulink
and Incisive Simulator Timing
Relationship” on page 4-30

Communication

Is it critical that communication performance be as
optimal as possible?

“Configuring the Communication
Link” on page 4-32

Are you running the Incisive simulator and Simulink
on the same computer?

“Configuring the Communication
Link” on page 4-32

If the Incisive simulator and Simulink are running on
the same computer, do you want to use shared memory
communication?

“Configuring the Communication
Link” on page 4-32

Do you want to choose a TCP/IP socket port? If so, what
port number or service will you use to establish a link?

“Configuring the Communication
Link” on page 4-32

If you are running the Incisive simulator and Simulink
different computers, what is the host name of the
computer running the Incisive simulator?

“Configuring the Communication
Link” on page 4-32

Clocks

Do you want to create a rising-edge clock to apply
stimuli to your cosimulation model?

“Creating Optional Clocks” on page
4-34

Do you want to create a falling-edge clock to apply
stimuli to your cosimulation model?

“Creating Optional Clocks” on page
4-34Do you want to specify the period for rising/falling edge

clocks specified in the model?
“Creating Optional Clocks” on page
4-34

Tcl

Are there any Tcl commands that you want the Incisive
simulator to execute before running a simulation, but
after loading the project in the Incisive simulator?

“Executing Tcl Commands Before
and After Cosimulation” on page
4-37

Are there any Tcl commands that you want the Incisive
simulator to execute after running a simulation?

“Executing Tcl Commands Before
and After Cosimulation” on page
4-37

4-22

Configuring an HDL Cosimulation Block

Opening the Block Parameters Dialog Box
To open the block parameters dialog for the HDL Cosimulation block,
double-click the block icon.

Simulink displays the following Block Parameters dialog box.

Mapping HDL Signals to Block Ports
The first step to configuring your Link for Cadence Incisive block is to map
signals and signal instances of your HDL design to port definitions in your
HDL Cosimulation block. In addition to identifying input and output ports,
you can specify a sample time for each output port. You can also specify a
fixed-point data type for each output port.

The signals that you map can be at any level of the HDL design hierarchy.

4-23

4 Modeling and Verifying an HDL Design with Simulink

To map the signals, you can use either of the following methods:

• Enter signal information manually into the Ports pane of the HDL
Cosimulation Block Parameters dialog (see “Entering Signal Information
Manually” on page 4-24). This approach can be more efficient when
you want to connect a small number of signals from your HDL model
to Simulink.

• Use the Auto Fill button to obtain signal information automatically by
transmitting a query to the Incisive simulator. This approach can save
significant effort when you want to cosimulate an HDL model that has a
large number of signals that you want to connect to your Simulink model.
In many cases, however, you will need to edit the signal data returned
by the query. See “Obtaining Signal Information Automatically from the
Incisive Simulator” on page 4-27 for details.

Note You must make sure that signals being used in cosimulation have
read/write access (this is done through the HDL simulator – see product
documentation for details). This rule applies to all signals on the Ports,
Clocks, and Tcl panes.

Entering Signal Information Manually
To enter signal information directly in the Ports pane:

1 In the Incisive simulator, determine the test signal pathnames for the HDL
signals you plan to define in your block. The Incisive simulator signal
pathname feature allows you to visualize and specify the hierarchy of
signals in a HDL design. One way of displaying the pathnames is to view
the test signals in the pathname pane of the wave window with the full
pathname option enabled.

2 In Simulink, open the block parameters dialog box for your HDL
Cosimulation block, if it is not already open.

3 Select the Ports tab of the Block Parameters dialog box. Simulink displays
the dialog box as shown in the following figure.

4-24

Configuring an HDL Cosimulation Block

In this pane, you define the HDL signals of your design that you want to
include in your Simulink block and set a sample time and data type for
output ports. The parameters that you should specify on the Ports pane
depend on the type of device the block is modeling as follows:

• For a device having both inputs and outputs — Specify block input
ports, block output ports, output sample times and output data types.
For output ports, accept the default or enter an explicit sample time.
Data types can be specified explicitly, or set to Inherit (the default). In
the default case, the output port data type is inherited either from the
signal connected to the port, or derived from the HDL model.

• For a sink device — Specify block output ports

• For a source device — Specify block input ports

4 Enter test signal pathnames in the Full HDL name text field, using the
Incisive simulator pathname syntax. Select either Input or Output from
the I/O Mode menu. If desired, set the Data Type and Fraction Length
parameters for signals explicitly, as discussed in step 6.

4-25

4 Modeling and Verifying an HDL Design with Simulink

Note After entering signal parameters, click Update to enter your
changes into the signal list.

Note When you define an input port, make sure that only one source is set
up to drive input to that port. For example, you should avoid defining an
input port that has multiple instances. If multiple sources drive a signal,
your Simulink model may produce unpredictable results.

5 You must specify a sample time for the output ports. Output sample times
are specified as integers. Simulink uses the value that you specify and the
current settings of the Timescales pane to calculate an actual simulation
sample time.

For more information on sample times in the Link for Cadence Incisive
environment, see “Representation of Simulation Time” on page 4-8.

6 You can configure the fixed-point data type of each output port explicitly
if desired, or use a default (Inherited) . In the default case, Simulink
determines the data type for an output port as follows:

If Simulink can determine the data type of the signal connected to the
output port, it applies that data type to the output port. For example,
the data type of a connected Signal Specification block is known by
back-propagation. Otherwise, Simulink queries the Incisive simulator to
determine the data type of the signal from the HDL model.

To assign an explicit fixed-point data type to a signal:

a Select either Signed or Unsigned from the Data Type menu.

b If the signal has a fractional part, enter the Fraction Length.

For example, an 8-bit signal with Signed data type and a Fraction
Length of 5 is assigned the data type sfix8_En5. An Unsigned 16-bit
signal with no fractional part (a Fraction Length of 0) is assigned the
data type ufix16.

7 Before closing the dialog box, be sure to click Apply to register your edits.

4-26

Configuring an HDL Cosimulation Block

Obtaining Signal Information Automatically from the Incisive
Simulator
The Auto Fill button lets you initiate an Incisive simulator query and supply
a path to a component or module in an HDL model under simulation in the
Incisive simulator. Usually, some modification of the port information is
required after the query completes.

The required steps are outlined in the following example procedure.

1 Open the block parameters dialog box for the HDL Cosimulation block.
Click the Ports tab. The Ports pane opens.

2 Click the Auto Fill button. The Auto Fill dialog box opens.

This modal dialog box requests a path to a component or module in your
HDL model; here you enter an explicit HDL path into the edit field.

3 Click OK to dismiss the dialog and transmit the query.

4 Port data is returned and entered into the Ports pane almost
instantaneously.

5 Click Apply to commit the port additions.

6 Observe that Auto Fill has returned information about all inputs and
outputs for the targeted component. In many cases, this information
includes signals that function in the Incisive simulator but cannot be
connected in the Simulink model. You should delete any such entries from
the list in the Ports pane unless you are adding blocks to the Simulink
model to represent these signals.

Note Enter force commands in the Tcl pane to drive the reset and enable
signals; for example:

force design/reset value time

where value is ’1’ or ’0’ and time is in nanoseconds.

7 Auto Fill returns default values for output ports:

4-27

4 Modeling and Verifying an HDL Design with Simulink

• Sample time: 1

• Data type: Inherit

• Fraction length: N/A

You may need to change these values as required by your model. See also
“Specifying Data Types for Output Ports” on page 4-28.

8 Before closing the HDL Cosimulation block parameters dialog box, click
Apply to commit any edits you have made.

Note Auto Fill does not return information for internal signals. If your
Simulink model needs to access such signals, you must enter them into the
Ports pane manually.

Specifying Data Types for Output Ports
The Data Type and Fraction Length parameters apply only to output
signals.

The Data Type property is enabled only for output signals. You can direct
Simulink to determine the data type, or you can assign an explicit data type
(with option fraction length). By explicitly assigning a data type, you can force
fixed point data types on output ports of an HDL Cosimulation block.

The Fraction Length property specifies the size, in bits, of the fractional part
of the signal in fixed-point representation. The Fraction Length property is
enabled when the signal Data Type property is not set to Inherit.

Output port data types are determined by the signal width and by the Data
Type and Fraction Length properties of the signal. To assign a port data
type, set the Data Type and Fraction Length properties as follows:

• Select Inherit from the Data Type list if you want Simulink to determine
the data type.

Inherit is the default setting. When Inherit is selected, the Fraction
Length edit field is disabled.

4-28

Configuring an HDL Cosimulation Block

Simulink attempts to compute the data type of the signal connected to the
output port by backward propagation. For example, if a Signal Specification
block is connected to an output, Simulink will force the data type specified
by Signal Specification block on the output port.

If Simulink cannot determine the data type of the signal connected to
the output port, it will query the Incisive simulator for the data type of
the port. As an example, if the Incisive simulator returns the data type
STD_LOGIC_VECTOR for a VHDL signal of size N bits, the data type ufixN is
forced on the output port. (The implicit fraction length is 0.)

Note The Data Type and Fraction Length properties apply only to

- VHDL signals of any logic type, such as STD_LOGIC or STD_LOGIC_VECTOR

- Verilog signals of wire or reg type

• Select Signed from the Data Type list if you want to explicitly assign
a signed fixed-point data type. When Signed is selected, the Fraction
Length edit field is enabled. The port is assigned a fixed point type
sfixN_EnF, where N is the signal width and F is the Fraction Length.

For example, if you specify Data Type as Signed and a Fraction Length
of 5 for a 16-bit signal, Simulink forces the data type to sfix16_En5. For
the same signal with a Data Type set to Signed and Fraction Length of
-5 , Simulink forces the data type to sfix16_E5.

• Select Unsigned from the Data Type list if you want to explicitly assign an
unsigned fixed point data type. When Unsigned is selected, the Fraction
Length edit field is enabled. The port is assigned a fixed point type
ufixN_EnF, where N is the signal width and F is the Fraction Length
value.

For example, if you specify Data Type as Unsigned and a Fraction
Length of 5 for a 16–bit signal, Simulink forces the data type to
ufix16_En5. For the same signal with a Data Type set to Unsigned and
Fraction Length of -5 , Simulink forces the data type to ufix16_E5.

4-29

4 Modeling and Verifying an HDL Design with Simulink

Configuring the Simulink and Incisive Simulator
Timing Relationship
You configure the timing relationship between Simulink and the Incisive
simulator by using the Timescales pane of the block parameters dialog box.
Before setting the Timescales parameters, you should read “Representation
of Simulation Time” on page 4-8 to understand the supported timing modes
and the issues that will determine your choice of timing mode.

You can specify either a relative or an absolute timing relationship between
Simulink and the Incisive simulator, as described in the following sections .

Specifying a Relative Timing Relationship
To configure relative timing mode for a cosimulation:

1 Select the Timescales tab of the HDL Cosimulation block parameters
dialog box.

2 Select Tick (default value) from the list on the right.

3 Enter a scale factor in the edit box on the left. The default scale factor is 1.

For example, in the following figure, the Timescales pane is configured
for a relative timing correspondence of 10 Incisive simulator ticks to 1
Simulink second.

4-30

Configuring an HDL Cosimulation Block

4 Click Apply to commit your changes.

Specifying an Absolute Timing Relationship
To configure absolute timing mode for a cosimulation:

1 Select the Timescales tab of the HDL Cosimulation block parameters
dialog box.

2 Select a unit of absolute time from the list on the right. Available units
are fs, ps, ns, us, ms, and s.

3 Enter a scale factor in the edit box on the left. The default scale factor is 1.

For example, in the following figure, the Timescales pane is configured
for an absolute timing correspondence of 1 Incisive simulator second to 1
Simulink second.

4-31

4 Modeling and Verifying an HDL Design with Simulink

4 Click Apply to commit your changes.

Configuring the Communication Link
Configure a block’s communication link with the Connection pane of the
block parameters dialog.

The following steps guide you through the communication configuration.

1 Determine whether Simulink and the Incisive simulator are running on
the same computer. If they are, skip to step 4.

2 Clear the HDL simulator running on this computer check box. (This
check box is selected by default.) Because Simulink and the Incisive
simulator are running on different computer, Connection method is
automatically set to Socket.

3 Enter the hostname of the computer that is running your HDL simulation
in the Incisive simulator in the Host name text field. In the Port number
or service text field, specify a valid port number or service for your
computer system. For information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1-18. Skip to step 5.

4-32

Configuring an HDL Cosimulation Block

4 If the HDL simulator and Simulink are running on the same computer,
decide whether you are going to use shared memory or TCP/IP sockets for
the communication channel. For information on the different modes of
communication, see “Modes of Communication” on page 1-9.

If you choose TCP/IP socket communication, specify a valid port number
or service for your computer system in the Port number or service text
field. For information on choosing TCP/IP socket ports, see “Choosing
TCP/IP Socket Ports” on page 1-18.

If you choose shared memory communication, select the Shared memory
check box.

5 If you want to bypass the HDL simulator when you run a Simulink
simulation, use the Connection Mode options to specify what type of
simulation connection you want. Select one of the following:

• Full Simulation: Confirm interface and run HDL simulation (default).

• Confirm Interface Only: Check HDL simulator for proper signal
names, dimensions, and data types, but do not run HDL simulation.

• No Connection: Do not communicate with the HDL simulator. The
HDL simulator does not need to be started.

With the 2nd and 3rd options, the Link for Cadence Incisive interface does
not communicate with the HDL simulator during Simulink simulation.

6 Click Apply.

The following example dialog shows communication definitions for an HDL
Cosimulation block. The block is configured for Simulink and the Incisive
simulator running on the same computer, communicating in TCP/IP socket
mode over TCP/IP port 4449.

4-33

4 Modeling and Verifying an HDL Design with Simulink

Creating Optional Clocks
You can create rising-edge or falling-edge clocks that apply internal stimuli to
your cosimulation model. When you specify a clock in your block definition,
Simulink creates a rising-edge or falling-edge clock that drives the specified
HDL signals by depositing them.

Simulink attempts to create a clock that has a 50% duty cycle and a predefined
phase that is inverted for the falling edge case. If necessary, Simulink
degrades the duty cycle to accommodate odd Simulink sample times, with a
worst case duty cycle of 66% for a sample time of T=3.

The following figure shows a timing diagram that includes rising and falling
edge clocks with a Simulink sample time of T=10 and an Incisive simulator
resolution limit of 1 ns. The figure also shows that given those timing
parameters, the clock duty cycle is 50%.

4-34

Configuring an HDL Cosimulation Block

7	��

38:	����	�����

&����)
�	�����

��������	������	!����
;	�<78

(��	���������	&���������	�����

�

$�����)
�	�����

To create clocks:

1 In the Incisive simulator, determine the clock signal pathnames you plan to
define in your block. To do this, you can use the same method explained
for determining the signal pathnames for ports in step 1 of “Mapping HDL
Signals to Block Ports” on page 4-23.

2 Select the Clocks tab of the Block Parameters dialog box. Simulink
displays the dialog box as shown in the following figure.

4-35

4 Modeling and Verifying an HDL Design with Simulink

3 Click the New button to add a new clock signal.

4 Enter the clock signal pathname in the Full HDL Name text field, using
Incisive simulator pathname syntax.

Note that vectored signals in the Clocks pane are not supported. Signals
must be logic types with ’1’ and ’0’ values.

5 To specify whether the clock generates a rising-edge or falling edge signal,
select Rising or Falling from the Edge list.

6 The Period field specifies the clock period. Accept the default (2), or
override it by entering the desired clock period explicitly in the Period field.

Specify the Period field as an even integer, with a minimum value of 2.

7 After entering the desired property values, click Update. This enters the
signal values into the signal list in the center of the Clocks pane.

8 When you have finished editing clock signals, click Apply to register your
changes with Simulink.

4-36

Configuring an HDL Cosimulation Block

The following dialog box defines the rising-edge clock clk for the HDL
Cosimulation block, with a default period of 2.

Executing Tcl Commands Before and After
Cosimulation
You have the option of specifying Tcl commands to execute before and after the
Incisive simulator simulates the HDL component of your Simulink model. You
can use Tcl for something as simple as a one-line echo command to confirm
that a simulation is running or as complete as a complex script that performs
an extensive simulation initialization and startup sequence. For example, the
Post- simulation command field on the Tcl Pane is particularly useful for
instructing the Incisive simulator to restart at the end of a simulation run.

You can specify the pre- and post-simulation Tcl commands using one of the
following methods:

• By entering Tcl commands in the Pre-simulation commands or
Post-simulation commands text fields of the HDL Cosimulation block

• By using the Simulink model construction command set_param

4-37

4 Modeling and Verifying an HDL Design with Simulink

Notes

• You can include the quit -f command in a post-simulation Tcl command
string to force the Incisive simulator to shut down at the end of a
cosimulation session. To ensure that all other after simulation Tcl
commands specified for the model have an opportunity to execute, specify
all after simulation Tcl commands in a single cosimulation block and place
quit at the end of the command string.

• With the exception of quit used in a post-simulation Tcl command, the
Tcl script that you specify for either pre- simulation or post-simulation
cannot include commands that load an Incisive simulator project or modify
simulator state. For example, they cannot include commands such as run,
stop, or reset.

Specifying Pre- and Post-Simulation Tcl Commands with HDL
Cosimulation Block Parameters Dialog Box
To specify Tcl commands,

1 Select the Tcl tab of the Block Parameters dialog box. The dialog box
appears as shown in the following figure.

4-38

Configuring an HDL Cosimulation Block

The Pre–simulation commands text box includes a puts command for
reference purposes.

2 Enter one or more commands in the Pre–simulation command and
Post–simulation command text boxes. You can specify one Tcl command
per line in the text box or enter multiple commands per line by appending
each command with a semicolon (;), which is the standard Tcl concatenation
operator.

3 Click Apply.

Specifying Pre- and Post-Simulation Tcl Commands with
Simulink Command set_param
Use this command to specify pre-simulation and post-simulation Tcl
commands. Set the Tcl commands with set_param at the MATLAB command
prompt.

This example shows setting several pre-simulation Tcl commands:

set_param('cosim_blk', 'TclPreSimCommand',...
['force sim:/filter2d_v/clk_enable 1;',...

4-39

4 Modeling and Verifying an HDL Design with Simulink

'force sim:/filter2d_v/reset 1 0 ns, 0 {1 ns};',...
'echo "Running Simulink Cosimulation block.";',...
'echo [clock format [clock seconds]]'])

This example shows setting a post-simulation Tcl command:

set_param('cosim_blk', 'TclPostSimCommand', 'quit -force');

The Tcl pane of the HDL Cosimulation block is automatically updated with
the new Tcl commands.

For more about set_param, refer to the Simulink documentation.

Applying Your Block Parameters Configuration
Settings
After you enter your block parameters settings,

1 Review the content of each HDL Cosimulation block pane.

2 When you are satisfied with the content, click Apply to apply any new
settings.

3 Click OK to dismiss the dialog box.

To verify the connection with the Incisive simulator and the signal names,
select Edit > Update diagram, or press Ctrl+D.

4-40

Running and Testing a Cosimulation Model in Simulink

Running and Testing a Cosimulation Model in Simulink
To run and test a cosimulation model in Simulink, click Simulation > Start
in your Simulink model window. Simulink runs the model and displays any
errors that it detects.

You can use Edit > Update diagram to check that the cosimulation interface
is correct before running. This menu option connects to the HDL simulator
and ensures that data types are correct.

4-41

4 Modeling and Verifying an HDL Design with Simulink

Using Frame-Based Processing in Cosimulation
This section discusses how to improve the performance of your cosimulation
by using frame-based signals.

• “Overview” on page 4-42

• “Using Frame-Based Processing” on page 4-42

Overview
The HDL Cosimulation block supports processing of single-channel
frame-based signals.

A frame of data is a collection of sequential samples from a single channel or
multiple channels. One frame of a single-channel signal is represented by a
M-by-1 column vector. A signal is frame-based if it is propagated through a
model one frame at a time.

Frame-based processing requires the Signal Processing Blockset. Source
blocks from the Signal Processing Sources library let you specify a frame-based
signal by setting the Samples per frame block parameter. Most other signal
processing blocks preserve the frame status of an input signal. You can use
the Buffer block to buffer a sequence of samples into frames.

Frame-based processing can improve the computational time of your Simulink
models, because with frame-based processing Simulink interacts with the
HDL simulator only once per frame, rather than once per sample. Use of
frame-based signals also lets you simulate the behavior of frame-based
systems more accurately.

See “Working with Signals” in the Signal Processing Blockset documentation
for detailed information about frame-based processing.

Using Frame-Based Processing
You do not need to configure the HDL Cosimulation block in any special
way for frame-based processing. To use frame-based processing in a
cosimulation, connect one or more single-channel frame-based signals to
the input port or ports of the HDL Cosimulation block. All such signals
must meet the requirements described in “Requirements and Restrictions

4-42

Using Frame-Based Processing in Cosimulation

for Using Frame-Based Signals” on page 4-43. The HDL Cosimulation
block automatically configures its output for frame-based operation at the
appropriate frame size.

Use of frame-based signals affects only the Simulink side of the cosimulation.
The behavior of the HDL code under simulation in the HDL simulator does
not change in any way. Simulink assumes that the HDL simulator processing
is sample-based. Samples acquired from the HDL simulator are assembled
into frames as required by Simulink. Conversely, input data framed by
Simulink is transmitted to the HDL simulator in frames, which are unpacked
and processed by the HDL simulator one sample at a time.

Requirements and Restrictions for Using Frame-Based Signals
Observe the following restrictions and requirements when connecting
frame-based signals in to an HDL Cosimulation block:

• Connection of mixed frame-based and sample-based signals to the same
HDL Cosimulation block is not supported.

• Only single-channel frame-based signals can be connected to the HDL
Cosimulation block. Use of multichannel (matrix) frame-based signals is
not supported in this release.

• All frame-based signals connected to the HDL Cosimulation block must
have the same frame size.

Frame-based processing in the Simulink model is transparent to the operation
of the HDL model under simulation in the HDL simulator. The HDL model
is presumed to be sample based. The following constraint also applies to the
HDL model under simulation in the Incisive simulator:

• VHDL signals should be specified as scalars, not vectors or arrays (with
the exception of bit vectors, as VHDL and Verilog bit vectors are converted
to the appropriately sized fixed-point scalar data type by the HDL
Cosimulation block).

4-43

4 Modeling and Verifying an HDL Design with Simulink

Using a Value Change Dump File for Design Verification
A value change dump (VCD) file logs changes to variable values, such as
the values of signals, in a file during a simulation session. VCD files can be
useful during design verification. Some examples of how you might apply
VCD files include

• For comparing results of multiple simulation runs, using the same or
different simulator environments

• As input to post-simulation analysis tools

VCD files include data that can be graphically displayed or analyzed with
postprocessing tools. For example, VCD files can be displayed in HDL wave
form viewers. Other examples of postprocessing include the extraction of data
pertaining to a particular section of a design hierarchy or data generated
during a specific time interval.

The To VCD File block provided in the Link for Cadence Incisive block
library serves as a VCD file generator during an HDL simulator and
Simulink cosimulation session. The block generates a VCD file that contains
information about changes to signals connected to the block’s input ports and
names the file with a specified file name.

Note The To VCD File block logs the logic states '1' and '0' only. The block
does not log the logic states 'X' and 'Z'.

The following sections discuss:

• “Generating a VCD File” on page 4-44

• “VCD File Format” on page 4-47

Generating a VCD File
To generate a VCD file,

1 Open your Simulink model, if it is not already open.

4-44

Using a Value Change Dump File for Design Verification

2 Identify the location where you want to add the To VCD File block. For
example, you might temporarily replace a scope with this block.

3 In the Simulink Library Browser, click the Link for Cadence Incisive
library. The browser displays four types of blocks, one of which is the To
VCD File block.

4 Copy the To VCD File block from the Library Browser to your model by
clicking the block and dragging it from the browser to your model window.

5 Connect the block ports to appropriate blocks in your Simulink model.

Note The To VCD File block does not support floating point signal types.

Note Because multi-dimensional signals are not part of the VCD
specification, they are flattened to a 1D vector in the file.

6 Configure the To VCD File block by specifying values for parameters in
the Block Parameters dialog box.

a Double-click the block icon. Simulink displays the following dialog box.

4-45

4 Modeling and Verifying an HDL Design with Simulink

b Specify a file name for the generated VCD file in the VCD file name
text box:

• If you specify a file name only, Simulink places the file in your current
MATLAB directory.

• Specify a complete pathname to place the generated file in a different
location.

• If you want the generated file to have a .vcd file type extension, you
must specify it explicitly.

Caution Do not give the same file name to different VCD blocks. Doing
so results in invalid VCD files.

c Specify an integer in the Number of input ports text box that indicates
the number of block input ports on which signal data is to be collected.

4-46

Using a Value Change Dump File for Design Verification

The block can handle up to 943 (830,584) bits, each of which maps to
a unique symbol in the VCD file.

In some cases, a single input port maps to multiple signals (and symbols).
This mapping is necessary when the input port receives a vector of real
numbers or a fixed-point real number. For example, a signal of type
sfix16_En15 requires 16 symbols.

d Click OK.

7 Choose an optimal timing relationship between Simulink and the HDL
simulator. The time scale options specify a correspondence between one
second of Simulink time and some quantity of HDL simulator time. Choose
relative time or absolute time. For more on the To VCD File time scale,
see To VCD File.

8 Run the simulation. Simulink captures the simulation data in the VCD
file as the simulation runs.

For a description of the VCD file format, see “VCD File Format” on page 4-47.

VCD File Format
The format of generated VCD files adheres to IEEE Std 1364-2001. The
following table describes selected contents from a generated VCD file.

Examples of Generated VCD File Format

File Content Description

$timescale 1 ns $ end
All timestamps for VCD variable value
changes are related to this single timescale.

$scope module manchestermodel $end
The scope module name is a prefix for the
signal name in the waveform viewer. The
module matches the Simulink mdl file name.
The VCD file name is the database prefix for
the signal in the waveform viewer.

4-47

4 Modeling and Verifying an HDL Design with Simulink

Examples of Generated VCD File Format (Continued)

File Content Description

$comment SL scale=1.000000 Tick;
HDL tick=1 ns; SL2HDL
Scaling Factor=1.000000 $end

This comment provides feedback about the
cosimulation time-scaling specified in the
ToVCD block dialog box parameters. In this
example, the Simulink timescale is “1 s in
Simulink corresponds to 1 tick in the HDL
simulator” and the specified HDL timescale
is “1 HDL Tick is defined as 1 ns”. These
settings mean that the signal sampling
times in Simulink are multiplied by 1.0 to
determine the VCD timestamps for the signal
value-changes.

$var wire 1 ! Original Data [0] $end
$var wire 1 " Recovered Clock [0] $end
$var wire 1 # Recovered Data [0] $end
$var wire 1 $ Data Validity [0] $end

Variable definitions. Each definition
associates a signal with character
identification code (symbol). The symbols
are derived from printable characters in the
ASCII character set from ! to ~. Variable
definitions also include the variable type
(wire) and size in bits.

VCD files can grow very large for larger designs or smaller designs with
longer simulation runs. The size of a VCD file generated by the To VCD
File block is limited only by the maximum number of signals (and symbols)
supported, which is 943 (830,584).

4-48

5

MATLAB Functions —
Alphabetical List

dec2mvl

Purpose Convert decimal integer to binary string

Syntax dec2mvl(d)
dec2mvl(d,n)

Description dec2mvl(d) returns the binary representation of d as a multivalued
logic string. d must be an integer smaller than 2^52.

dec2mvl(d,n) produces a binary representation with at least n bits.

Examples The following function call returns the string ’10111’:

dec2mvl(23)

The following function call returns the string ’01001’:

dec2mvl(-23)

The following function call returns the string ’11101001’:

dec2mvl(-23,8)

See Also mvl2dec

5-2

hdldaemon

Purpose Start MATLAB server component of Link for Cadence Incisive software

Syntax hdldaemon
hdldaemon('PropertyName', 'PropertyValue'...)
hdldaemon('status')
hdldaemon('kill')

Description Server Activation

hdldaemon starts the Link for Cadence Incisive MATLAB server
component with the following default settings:

• Shared memory communication enabled

• Time resolution for the MATLAB simulation function output ports
set to scaled (type double)

Although you can use TCP/IP on a single system (one that is running
both MATLAB and the Incisive simulator), using shared memory
communication when your application configuration consists of a single
system can result in increased performance.

Only one hldaemon can be running at any given time.

Matching Communication Modes and Socket Ports

The communication mode that you specify (shared memory or TCP/IP
sockets) must match what you specify for the communication mode
when you issue the matlabtb , matlabtbeval, or matlabcp command
in the Incisive simulator.

In addition, if you specify TCP/IP socket mode, you must also identify
a socket port to be used for establishing links. You can choose and
specify a socket port yourself, or you can use an option that instructs the
operating system to identify an available socket port for you. Regardless
of how the socket port is identified, the socket you specify with the
Incisive simulator must match the socket being used by the server.

5-3

hdldaemon

For more information on modes of communication, see “Modes of
Communication” on page 1-9. For more information on establishing the
Incisive simulator end of the communication link, see “Initializing the
HDL Simulator for a MATLAB Link Session” on page 3-13.

5-4

hdldaemon

hdldaemon('PropertyName', 'PropertyValue'...) starts the Link
for Cadence Incisive MATLAB server component with property-value
pair settings that specify the communication mode for the link between
MATLAB and the Incisive simulator, the time resolution for the
MATLAB simulation function output ports, and, optionally, a Tcl
command to be executed immediately in the HDL simulator. See
“Property Name/Property Value Pairs” on page 5-6 for details.

Link Status

hdldaemon('status') returns the following message indicating that a
link (connection) exists between MATLAB and the Incisive simulator:

HDLDaemon socket server is running on port 4449 with 0 connections

You can also use this function to check on the mode of communication
being used, the number of existing connections, and the interprocess
communication identifier (ipc_id) being used for a link by assigning the
return value of hdldaemon to a variable. The ipc_id identifies a port
number for TCP/IP socket links or the file system name for a shared
memory communication channel. For example:

x=hdldaemon('status')
x =

comm: 'sockets'
connections: 0

ipc_id: '4449'

This function call indicates that the server is using TCP/IP socket
communication with socket port 4449 and is running with no active
Incisive simulator clients. If a shared memory link is in use, the value
of comm is 'shared memory' and the value of ipc_id is a file system
name for the shared memory communication channel.

Server Shutdown

hdldaemon('kill') shuts down the MATLAB server without shutting
down MATLAB.

5-5

hdldaemon

Property
Name/Property
Value
Pairs

The following property name/property value pairs are valid for
hdldaemon:

'socket', tcp_spec
Specifies the TCP/IP socket mode of communication for the
link between MATLAB and the Incisive simulator. If you omit
this argument, the server uses the shared memory mode of
communication.

Note You must use TCP/IP socket communication when your
application configuration consists of multiple computing systems.

The tcp_spec can be a TCP/IP port number, TCP/IP port alias or
service name, or the value zero, indicating that the port is to be
assigned by the operating system. Some valid tcp_spec examples
follow:

Option Examples

Port number '4449' or 4449

Alias or service
name

'MATLAB Service'

Operating system
assigned

'0' or 0

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1-18.

5-6

hdldaemon

Note If you specify the operating system option ('0' or 0),
use hdldaemon('status') to acquire the assigned socket port
number. You must specify this port number when you issue a link
request with the matlabtb, matlabtbeval, or matlabcp command
in the Incisive simulator.

'time', 'sec' | 'time', 'int64'
Specifies the time resolution for MATLAB function output ports
and simulation times (tnow).

Specify... For...

'time' 'sec'
(default)

A double value that is scaled to
seconds based on the current Incisive
simulation resolution

'time' 'int64' 64-bit integer representing the
number of simulation steps

If you omit this argument, the server uses scaled resolution time.

'tclcmd', 'command'
Passes a Tcl command string, to be executed immediately in the
Incisive simulator, from MATLAB to the Incisive simulator. You
may use a compound command and separate the commands with
semicolons.

Note The Tcl command string you specify cannot include
commands that load an Incisive simulator project or modify
simulator state. For example, the string cannot include commands
such as run, stop, or reset.

5-7

hdldaemon

Examples If Your Application Is
to...

Do the Following...

Operate in shared
memory mode

Omit the 'socket', tcp_spec property
name/property value pair. The interface
operates in shared memory mode by
default. You should use shared memory
mode if your application configuration
consists of a single system and uses a
single communication channel.

Operate in TCP/IP
socket mode, using a
specific TCP/IP socket
port

Specify the 'socket', tcp_spec property
name and value pair. The tcp_spec can
be a socket port number or service name.
Examples of valid port specifications
include '4449', 4449, and MATLAB
Service. For information on choosing a
TCP/IP socket port, see “Choosing TCP/IP
Socket Ports” on page 1-18.

Operate in TCP/IP
socket mode, using a
TCP/IP socket that
the operating system
identifies as available

Specify 'socket', 0 or 'socket', '0'.

Return time values in
seconds (type double)

Specify 'time', 'sec' or omit the
parameter. This is the default time value
resolution.

Return 64-bit time
values (type int64)

Specify 'time', 'int64' .

Execute Tcl command
immediately upon
simulator connection

Specify the 'tclcmd', 'command'
property name and value pair. Command
must be a valid Tcl command but cannot
include commands that load an Incisive
simulator project or modify the simulator
state.

5-8

hdldaemon

The following function call starts the MATLAB server with shared
memory communication enabled and a 64-bit time resolution format for
the MATLAB function’s output ports:

hdldaemon('time', 'int64')

The following function call starts the MATLAB server with TCP/IP
socket communication enabled on socket port 4449. Although it is not
necessary to use TCP/IP socket communication on a single-computer
application, you can use that mode of communication locally. A time
resolution is not specified. Thus, the default, scaled simulation time
resolution is applied to the MATLAB function’s output ports:

hdldaemon('socket', 4449)

The following function call starts the MATLAB server with TCP/IP
socket communication enabled on port 4449. A 64-bit time resolution
format is also specified:

hdldaemon('socket', 4449, 'time', 'int64')

The following function call causes the string This is a test to be
displayed at the Incisive simulator prompt:

hdldaemon('tclcmd','puts {This is a test}')

The following is an example of a compound Tcl command used with
hdldaemon:

hdldaemon('tclcmd','{force filter2d_v.clk_enable 1

-after 0ns;

force filter2d_v.reset 1 -after 0 ns 0 -after 1 ns;

puts {Running Simulink Cosimulation block};

puts [clock format [clock seconds]]}')

5-9

mvl2dec

Purpose Convert multivalued logic to decimal

Syntax mvl2dec('multivalued_logic_string')
mvl2dec('multivalued_logic_string', signed)

Description mvl2dec('multivalued_logic_string') converts a multivalued
logic string multivalued_logic_string to a positive decimal. If
multivalued_logic_string contains any character other than '0' or '1',
NaN is returned. multivalued_logic_string must be a vector.

mvl2dec('multivalued_logic_string', signed) converts a
multivalued logic string multivalued_logic_string to a positive or
a negative decimal. If signed is true, this function assumes the
first character multivalued_logic_string(1) to be a signed bit of a 2’s
complement number. If signed is missing or false, the multivalued logic
string is converted to a positive decimal.

Examples The following function call returns the decimal value 23:

mvl2dec('010111')

The following function call returns NaN:

mvl2dec('xxxxxx')

The following function call returns the decimal value -9:

mvl2dec('10111',true)

See Also dec2mvl

5-10

nclaunch

Purpose Start and configure Incisive simulators for use with Link for Cadence
Incisive software

Syntax nclaunch('PropertyName', 'PropertyValue'...)

Description nclaunch('PropertyName', 'PropertyValue'...) starts the Incisive
simulator for use with the MATLAB and Simulink features of the Link
for Cadence Incisive software. The initial directory in the Incisive
simulator matches your MATLAB current directory if no explicit rundir
parameter is specified.

After you call this function, you can use HDL Simulator Tcl Commands
to do interactive debug setup.

The property name/property value pair settings allow you to customize
the Tcl commands used to start the Incisive simulator, the ncsim
executable to be used, the path and name of the Tcl script that stores
the start commands, and for Simulink applications, details about the
mode of communication to be used by the applications. You must use a
property name/property value pair with nclaunch.

Property
Name/Property
Value
Pairs

'hdlsimdir', 'pathname'
Specifies the pathname to the Incisive simulator executable to
be started. By default, the function uses the first version of
the simulator that it finds on the system path (defined by the
path variable) . Use this option to start different versions of the
Incisive simulator or if the version of the simulator you want to
run does not reside on the system path.

'hdlsimexe', 'simexename'
Specifies the name of an Incisive simulator executable. By default,
this function uses 'ncsim'. You can specify a custom-built
simulator executable with 'simexename.'

'libdir', 'directory'
Specifies the directory containing MATLAB shared libraries. This
property creates an entry in the startup Tcl file that points to
the directory with the shared libraries needed for the Incisive

5-11

nclaunch

simulator to communicate with MATLAB when the Incisive
simulator is running on a machine that does not have MATLAB.

'rundir', 'dirname'
Specifies where to run the HDL simulator. By default, the
function uses the current working directory.

• If dirname is specified and the directory exists, the HDL
simulator is run in the specified directory.

• If no rundir property/value pair is specified or if dirname
is empty, the HDL simulator is run in the current working
directory.

• If the value of dirname is “TEMPDIR”, the function creates a
temporary directory in which it runs the HDL simulator.

• If dirname is specified and the directory does not exist, you
will get an error.

'startupfile', 'pathname'
Specifies a Tcl script that defines the behavior of the Incisive
simulator commands hdlsimmatlab and hdlsimulink. The
Tcl script consists of some general-purpose Tcl commands for
launching the Incisive simulator and any commands you specify
with the 'tclstart' property. If you omit this property, the
function creates a temporary file each time the Incisive simulator
starts. If you specify a name for the Tcl script, later you can use
the file to start the Incisive simulator from a system shell as
shown in the following syntax:

tclsh tcl_scriptname

'socketsimulink', 'tcp_spec'
Specifies TCP/IP socket communication for links between
the Incisive simulator and Simulink. For TCP/IP socket
communication on a single computing system, the tcp_spec can
consist of just a TCP/IP port number or service name. If you are
setting up communication between computing systems, you must

5-12

nclaunch

also specify the name or Internet address of the remote host. The
following table lists different ways of specifying tcp_spec.

Format Example

<port-num> 4449

<port-alias> matlabservice

<port-num>@<host> 4449@compa

<host>:<port-num> compa:4449

<port-alias>@<host-ia> matlabservice@123.34.55.23

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1-18.

If the Incisive simulator and Simulink are running on the same
computing system, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you omit socketsimulink
tcp_spec from the function call.

'starthdlsim', ['yes' | 'no']
Determines whether the Incisive simulator is launched. The
default is yes, which launches the Incisive simulator and creates a
startup Tcl file. If starthdlsim is set to no, the Incisive simulator
is not launched, but a startup Tcl file is still created.

This startup Tcl file contains pointers to MATLAB and Simulink
shared libraries. To run the Incisive simulator manually, see
“Setting Up Link for Cadence Incisive Software for Use with the
Incisive Simulator on a Separate Machine from MATLAB” on
page 1-24.

'tclstart', 'tcl_commands'
Specifies one or more Tcl commands to execute before the Incisive
simulator launches. Specify a command string or a cell array

5-13

nclaunch

of command strings. You must specify at least one command;
otherwise, no action occurs.

Note You must put “exec” in front of non-Tcl system shell
commands. For example:

exec -ncverilog -c +access+rw +linedebug top.v
hdlsimulink -gui work.top

Examples The following function call sequence compiles the design and starts
Simulink with a GUI from the “proj” directory with the model loaded.
Simulink is instructed to communicate with the Link for Cadence
Incisive interface on socket port 4449. All of these commands are
specified in a single string as the property value to tclstart.

nclaunch(...
'tclstart',...
{'exec ncverilog -c +access+rw +linedebug top.v',...
'hdlsimulink -gui work.top'},...
'socketsimulink','4449',...
'rundir', '/proj');

In this next example, tclcmd is used to build the sequence of Tcl
commands that are executed in a Tcl shell after calling nclaunch from
MATLAB.

• tclcmd{1} compiles vlogtestbench_top.

• tclcmd{2} elaborates the model.

• tclcmd{3} calls hdlsimmatlab in gui mode and loads the elaborated
vlogtestbench_top in the simulator.

The arguments being passed with input (matlabtb and run) are
executed in the ncsim Tcl shell. In this example, matlabcp associates the
m-function vlogmatlabc to the module instance u_matlab_component.

5-14

nclaunch

It assumes that the hdldaemon in MATLAB is listening on port 32864.
run will run 50 resolution units (ticks).

tclcmd{1} = 'exec ncvlog vlogtestbench_top.v'

tclcmd{2} = 'exec ncelab -access +wc vlogtestbench_top'

tclcmd{3} = ['hdlsimmatlab -gui vlogtestbench_top ' ...

'-input "{@matlabcp vlogtestbench_top.u_matlab_component...

-mfunc vlogmatlabc -socket 32864}" '...

'-input "{@run 50}"']

nclaunch('hdlsimdir', 'local.IUS.glnx.tools.bin', 'tclstart',tclcmd);

The following example demonstrates using the property startupfile
to designate a Tcl script that is then used to start the HDL simulator
from the Tcl shell.

In MATLAB:

nclaunch (`tclstart', `xxx', `startupfile', `mytclscript',...

`starthdlsim', `no')

In Tcl shell:

shell> tclsh mytclscript

5-15

6

HDL Simulator Tcl
Commands — Alphabetical
List

hdlsimmatlab

Purpose Load instantiated HDL design for verification with MATLAB

Syntax hdlsimmatlab <instance> [<ncsim_args>]

Arguments <instance>
Specifies the instance of an HDL design to load for verification.

<ncsim_args>
Specifies one or more ncsim command arguments. For details, see
the description of ncsim in the Incisive simulator documentation.

Description The hdlsimmatlab command loads the specified instance of an HDL
design for verification and sets up the Incisive simulator so it can
establish a communication link with MATLAB. The Incisive simulator
opens a simulation workspace as it loads the HDL design.

This command may be run from the HDL simulator prompt or from
a Tcl script shell (tclsh).

Examples The following command loads the module instance parse from library
work for verification and sets up the Incisive simulator so it can
establish a communication link with MATLAB:

tclshell> hdlsimmatlab work.parse

6-2

hdlsimulink

Purpose Load instantiated HDL design for cosimulation with Simulink

Syntax hdlsimulink [<ncsim_args>] <instance>
[-socket <tcp_spec>]

Argument <ncsim_args>
Specifies one or more ncsim command arguments. At a minimum,
either -gui or -tcl is required. If you specify -gui, the Simulink
GUI will be launched when the HDL design is loaded. If you
specify -tcl, a Tcl script shell is launched instead. If you do not
specify either of these arguments, the HDL simulator runs the
simulation without Simulink. Other valid ncsim arguments may
be specified in addition to -gui or -tcl. For more information
on -gui, -tcl, or other ncsim arguments, see the description of
ncsim in the Incisive simulator documentation.

<instance>
Specifies the instance of an HDL design to load for cosimulation.

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between
the Incisive simulator and MATLAB. This setting overrides the
setting specified with the MATLAB nclaunch function. The
<tcp_spec> can consist of a TCP/IP socket port number or service
name (alias). For example, you might specify port number 4449 or
the service name matlabservice.

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1-18.

If the Incisive simulator and MATLAB are running on the
same computer, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you omit -socket <tcp-spec>
from the command line.

6-3

hdlsimulink

Note The communication mode that you specify with the
hdlsimulink command must match what you specify for the
communication mode when you configure Link for Cadence
Incisive blocks in your Simulink model.

For more information on modes of communication, see “Modes
of Communication” on page 1-9. For more information on
establishing the Simulink end of the communication link, see
“Configuring the Communication Link” on page 4-32.

Description The hdlsimulink command loads the specified instance of an HDL
design for cosimulation and sets up the Incisive simulator so it can
establish a communication link with Simulink. The Incisive simulator
opens a simulation workspace into which it loads the HDL design.

Examples The following command loads the module instance parse from library
work for cosimulation, sets up the Incisive simulator so it can establish
a communication link with Simulink, and opens a Tcl script shell:

tclshell> hdlsimulink -gui work.parse

6-4

matlabcp

Purpose Associate MATLAB component function with instantiated HDL design

Syntax matlabcp <instance>
[<time-specs>]
[-socket <tcp-spec>]
[-rising <port>[,<port>...]]
[-falling <port> [,<port>,...]]
[-sensitivity <port>[,<port>,...]]
[-mfunc <name>]

Arguments <instance>
Specifies an instance of an HDL design that is associated with
a MATLAB function. By default, matlabcp associates the
instance to a MATLAB function that has the same name as the
instance. For example, if the instance is myfirfilter, matlabcp
associates the instance with the MATLAB function myfirfilter.
Alternatively, you can specify a different MATLAB function with
-mfunc.

Do not specify an instance of an HDL design that has already been
associated with a MATLAB test bench function (via matlabtb).

<time-specs>
Specifies a combination of time specifications consisting of any or
all of the following:

6-5

matlabcp

<timen>,... Specifies one or more discrete time values
at which the specified MATLAB function
is called. Each time value is relative
to the current simulation time. The
MATLAB function is always called once
at the start of the simulation, even if you
do not specify a time.

-repeat <time> Specifies that the MATLAB function be
called repeatedly based on the specified
<timen>,... pattern. The time values
are relative to the value of tnow at the
time the MATLAB function is initially
called.

-cancel <time> Specifies a time at which the specified
MATLAB function stops executing. The
time value is relative to the value of
tnow at the time the MATLAB function
is initially called. If you do not specify
a cancel time, the command calls the
MATLAB function.

Note Time specifications must be placed after the matlabcp
instance and before any additional command arguments;
otherwise the time specifications are ignored.

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between
the Incisive simulator and MATLAB. For TCP/IP socket
communication on a single computer, the <tcp_spec> can consist
of just a TCP/IP port number or service name (alias). If you are
setting up communication between computers, you must also
specify the name or Internet address of the remote host that is

6-6

matlabcp

running the MATLAB server (hdldaemon). The following table
lists different ways of specifying <tcp_spec>.

Format Example

<port-num> 4449

<port-alias> matlabservice

<port-num>@<host> 4449@compa

<host>:<port-num> compa:4449

<port-alias>@<host-ia> matlabservice@123.34.55.23

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1-18.

If the Incisive simulator and MATLAB are running on the
same computer, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you omit -socket <tcp_spec>
from the command line.

Note The communication mode that you specify with the
matlabcp command must match what you specify for the
communication mode when you issue the hdldaemon command in
MATLAB.

For more information on modes of communication, see “Modes
of Communication” on page 1-9. For more information on
establishing the MATLAB end of the communication link, see
“Starting the MATLAB Server” on page 3-7.

-rising <signal>[, <signal>...]
Indicates that the specified MATLAB function is called on the
rising edge (transition from '0' to '1') of any of the specified

6-7

matlabcp

signals. Specify -rising with the pathnames of one or more
signals defined as a logic type.

-falling <signal>[, <signal>...]
Indicates that the specified MATLAB function is called when any
of the specified signals experiences a falling edge—changes from
'1' to '0'. Specify -falling with the pathnames of one or more
signals defined as a logic type.

-sensitivity <signal>[, <signal>...]
Indicates that the specified MATLAB function is called when any
of the specified signals changes state. Specify -sensitivity with
the pathnames of one or more signals. Signals in the sensitivity
list can be any type and can be at any level in the hierarchy of
the HDL model.

-mfunc <name>
The name of the MATLAB function that is attached to the module
you specify for instance. If you omit this argument, matlabcp
attaches the module to a MATLAB function that has the same
name as the module. For example, if the module is myfirfilter,
matlabcp associates the module with the MATLAB function
myfirfilter. If you omit this argument and matlabcp does not
find a MATLAB function with the same name, the command
generates an error message.

Description The matlabcp command has the following characteristics:

• Starts the Incisive simulator client component of the Link for
Cadence Incisive software.

• Associates a specified instance of an HDL design created in the
Incisive simulator with a MATLAB function.

• Creates a process that schedules invocations of the specified
MATLAB function.

• Cancels any pending events scheduled by a previous matlabcp
command that specified the same instance. For example, if you issue

6-8

matlabcp

the command matlabcp for instance foo, all previously scheduled
events initiated by matlabcp on foo are canceled.

Note For the Incisive simulator to establish a communication link with
MATLAB, the MATLAB server, hdldaemon, must be running with the
same communication mode and, if appropriate, the same TCP/IP socket
port as you specify with the matlabcp command.

MATLAB component functions simulate the behavior of the HDL model.
A stub entity or module (providing port definitions only) in the HDL
design passes its input signals to the MATLAB component function.
The MATLAB component processes this data and returns the results
to the outputs of the stub entity or module. A MATLAB component
typically provides some functionality (such as a filter) that is not yet
implemented in the HDL code. See “Coding a MATLAB Component
Function” on page 2-33.

Examples The following command starts the Incisive simulator client component
of the Link for Cadence Incisive software. The '-mfunc' option specifies
the m-function to connect to and '-socket' option specifies the port
number for socket connection mode.

ncsim>matlabcp vlogtestbench_top.u_matlab_component
-mfunc vlogmatlabc -socket 4449

6-9

matlabtb

Purpose Initiate MATLAB test bench session for instantiated HDL design

Syntax matlabtb <instance>
[<time-specs>]
[-socket <tcp-spec>]
[-rising <port>[,<port>...]]
[-falling <port> [,<port>,...]]
[-sensitivity <port>[,<port>,...]]
[-mfunc <name>]

Arguments <instance>
Specifies the instance of an HDL design that attaches to a
MATLAB test bench function. By default, matlabtb attaches the
instance to a MATLAB function that has the same name as the
instance. For example, if the instance is myfirfilter, matlabtb
associates the instance with the MATLAB function myfirfilter.
Alternatively, you can specify a different MATLAB function with
-mfunc.

Note Do not specify an instance of an HDL design that has
already been associated with a MATLAB component function (via
matlabcp). If you do, the new association overwrites the existing
one.

<time-specs>
Specifies a combination of time specifications consisting of any or
all of the following:

6-10

matlabtb

<timen>,... Specifies one or more discrete time values
at which the specified MATLAB function
is called. Each time value is relative to
the current simulation time. Even if you
do not specify a time, the command calls
the MATLAB function once at the start of
the simulation.

-repeat <time> Specifies that the MATLAB function be
called repeatedly based on the specified
<timen>,... pattern. The time values
are relative to the value of tnow at the
time the MATLAB function is initially
called.

-cancel <time> Specifies a time at which the specified
MATLAB function stops executing. The
time value is relative to the value of
tnow at the time the MATLAB function
is initially called. If you do not specify
a cancel time, the command calls the
MATLAB function.

Note Time specifications must be placed after the matlabtb
instance and before any additional command arguments;
otherwise the time specifications are ignored.

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between
the Incisive simulator and MATLAB. For TCP/IP socket
communication on a single computer, the <tcp_spec> can consist
of just a TCP/IP port number or service name (alias). If you are
setting up communication between computers, you must also
specify the name or Internet address of the remote host that is

6-11

matlabtb

running the MATLAB server (hdldaemon). The following table
lists different ways of specifying <tcp_spec>.

Format Example

<port-num> 4449

<port-alias> matlabservice

<port-num>@<host> 4449@compa

<host>:<port-num> compa:4449

<port-alias>@<host-ia> matlabservice@123.34.55.23

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1-18.

If the Incisive simulator and MATLAB are running on the
same computer, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you omit -socket <tcp_spec>
from the command line.

Note The communication mode that you specify with the
matlabtb command must match what you specify for the
communication mode when you issue the hdldaemon command in
MATLAB.

For more information on modes of communication, see “Modes
of Communication” on page 1-9. For more information on
establishing the MATLAB end of the communication link, see
“Starting the MATLAB Server” on page 3-7.

-rising <signal>[, <signal>...]
Indicates that the specified MATLAB function is called on the
rising edge (transition from '0' to '1') of any of the specified

6-12

matlabtb

signals. Specify -rising with the pathnames of one or more
signals defined as a logic type.

-falling <signal>[, <signal>...]
Indicates that the specified MATLAB function is called when any
of the specified signals experiences a falling edge—changes from
'1' to '0'. Specify -falling with the pathnames of one or more
signals defined as a logic type.

-sensitivity <signal>[, <signal>...]
Indicates that the specified MATLAB function is called when any
of the specified signals changes state. Specify sensitivity with
the pathnames of one or more signals. Signals in the sensitivity
list can be any type and can be at any level of the HDL design.

-mfunc <name>
The name of the MATLAB function that is attached to the module
you specify for instance. If you omit this argument, matlabtb
attaches the module to a MATLAB function that has the same
name as the module. For example, if the module is myfirfilter,
matlabtb associates the module with the MATLAB function
myfirfilter. If you omit this argument and matlabtb does not
find a MATLAB function with the same name, the command
generates an error message.

Description The matlabtb command has the following characteristics:

• Starts the Incisive simulator client component of the Link for
Cadence Incisive software.

• Associates a specified instance of an HDL design created in the
Incisive simulator with a MATLAB function.

• Creates a process that schedules invocations of the specified
MATLAB function.

• Cancels any pending events scheduled by a previous matlabtb
command that specified the same instance. For example, if you issue
the command matlabtb for instance foo, all previously scheduled
events initiated by matlabtb on foo are canceled.

6-13

matlabtb

Note For the Incisive simulator to establish a communication link with
MATLAB, the MATLAB server, hdldaemon, must be running with the
same communication mode and, if appropriate, the same TCP/IP socket
port as you specify with the matlabtb command.

Examples The following command starts the Incisive simulator client component
of the Link for Cadence Incisive software, associates an instance of the
module myfirfilter with the MATLAB function myfirfilter, and
initiates a local TCP/IP socket-based test bench session using TCP/IP
port 4449. Based on the specified test bench stimuli, myfirfilter.m
executes 5 nanoseconds from the current time, and then repeatedly
every 10 nanoseconds:

ncsim> matlabtb myfirfilter 5 ns -repeat 10 ns -socket 4449

The following command starts the Incisive simulator client component
of the Link for Cadence Incisive software, and initiates a remote TCP/IP
socket-based session using remote MATLAB host compa and TCP/IP
port 4449. Based on the specified test bench stimuli, myfirfilter.m
executes 10 nanoseconds from the current time, each time signal
work.fclk experiences a rising edge, and each time signal work.din
changes state.

ncsim> matlabtb myfirfilter 10 ns -rising top.fclk
-sensitivity top.din -socket 4449@compa

The following command starts the Incisive simulator client component
of the Link for Cadence Incisive software. The '-mfunc' option specifies
the m-function to connect to and '-socket' option specifies the port
number for socket connection mode. '-sensitivity' indicates that the
test bench session is sensitized to the signal sine_out.

ncsim>matlabtb osc_top -sensitivity osc_top.sine_out
-socket 4448 -mfunc hosctb

6-14

matlabtbeval

Purpose Call specified MATLAB function for immediate execution on behalf of
instantiated HDL design

Syntax matlabtbeval <instance> [-socket <tcp_spec>]
[-mfunc <name>]

Arguments <instance>
Specifies the instance of an HDL design that attaches to a
MATLAB function. By default, matlabtbeval attaches the
instance to a MATLAB function that has the same name as
the instance. For example, if the instance is myfirfilter,
matlabtbeval associates the instance with the MATLAB function
myfirfilter. Alternatively, you can specify a different MATLAB
function with the -mfunc property.

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between
the Incisive simulator and MATLAB. For TCP/IP socket
communication on a single computer, the <tcp_spec> can consist
of just a TCP/IP port number or service name (alias). If you are
setting up communication between computers, you must also
specify the name or Internet address of the remote host. The
following table lists different ways of specifying <tcp_spec>.

Format Example

<port-num> 4449 on this computer

<port-alias> matlabservice on this
computer

<port-num>@<host> 4449@compa

<host>:<port-num> compa:4449

<port-alias>@<host-ia> matlabservice@123.34.55.23

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1-18.

6-15

matlabtbeval

If the Incisive simulator and MATLAB are running on the
same computer, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you omit -socket <tcp-spec>
from the command line.

Note The communication mode that you specify with the
matlabtbeval command must match what you specify for the
communication mode when you call the hdldaemon command to
start the MATLAB server.

For more information on modes of communication, see “Modes
of Communication” on page 1-9. For more information on
establishing the MATLAB end of the communication link, see
“Starting the MATLAB Server” on page 3-7.

-mfunc <name>
The name of the MATLAB function that is attached to the
module you specify for instance. If you omit this argument,
matlabtbeval attaches the module to a MATLAB function that
has the same name as the module. For example, if the module
is myfirfilter, matlabtbeval associates the module with the
MATLAB function myfirfilter. If you omit this argument and
matlabtbeval does not find a MATLAB function with the same
name, the command displays an error message.

Description The matlabtbeval command has the following characteristics:

• Starts the Incisive simulator client component of the Link for
Cadence Incisive software.

• Associates a specified instance of an HDL design created in the
Incisive simulator with a MATLAB function.

• Executes the specified MATLAB function once and immediately on
behalf of the specified module instance.

6-16

matlabtbeval

Note For the Incisive simulator to establish a communication link with
MATLAB, the MATLAB hdldaemon must be running with the same
communication mode and, if appropriate, the same TCP/IP socket port
as you specify with the matlabtbeval command.

Examples The following command starts the Incisive simulator client component
of the Link for Cadence Incisive software, associates an instance of the
module myfirfilter with the function myfirfilter.m, and uses a
local TCP/IP socket-based communication link to TCP/IP port 4449 to
execute the function myfirfilter.m:

ncsim> matlabtbeval myfirfilter -socket 4449

The following command starts the Incisive simulator client component
of the Link for Cadence Incisive software, associates an instance of the
module filter with the function myfirfilter.m, and uses a remote
TCP/IP socket-based communication link to host compa and TCP/IP port
4449 to execute the function myfirfilter.m

ncsim> matlabtbeval myfirfilter -socket 4449@compa

6-17

nomatlabtb

Purpose Terminate active MATLAB test bench and MATLAB component
sessions

Syntax nomatlabtb

Description The nomatlabtb command terminates all active MATLAB test bench
and MATLAB component sessions that were previously initiated by
matlabtb or matlabcp commands.

Examples The following command terminates all MATLAB test bench and
MATLAB component sessions:

ncsim> nomatlabtb

See Also matlabcp, matlabtb

6-18

7

Simulink Blocks —
Alphabetical List

HDL Cosimulation

Purpose Cosimulate a hardware component by communicating with an HDL
model executing in Incisive simulator

Library Link for Cadence Incisive

Description The HDL Cosimulation block cosimulates a hardware component by
applying input signals to and reading output signals from an HDL
model under simulation in the Incisive simulator. You can use this
block to model a source or sink device by configuring the block with
input or output ports only.

The tabbed panes on the block’s dialog box let you configure:

• Block input and output ports that correspond to signals (including
internal signals) of an HDL model. You must specify a sample time
for each output port; you can also specify a data type for each output
port.

• Type of communication and communication settings used to exchange
data between simulators.

• The timing relationship between units of simulation time in Simulink
and the Incisive simulator.

• Rising-edge or falling-edge clocks to apply to your model. You can
specify the period for each clock signal.

• Tcl commands to run before and after the simulation.

The Ports pane provides fields for mapping signals of your HDL design
to input and output ports in your block. The signals can be at any level
of the HDL design hierarchy. Simulink deposits an input port signal
on an Incisive simulator signal at the signal’s sample rate. Conversely,
Simulink reads an output port signal from a specified Incisive simulator
signal at the specified sample rate.

In general, Simulink handles port sample periods as follows:

7-2

HDL Cosimulation

• If an input port is connected to a signal that has an explicit sample
period, based on forward propagation, Simulink applies that rate
to the port.

• If an input port is connected to a signal that does not have an explicit
sample period, Simulink assigns a sample period that is equal to
the least common multiple (LCM) of all identified input port sample
periods for the model.

• After Simulink sets the input port sample periods, it applies
user-specified output sample times to all output ports. An explicit
sample time must be specified for each output port.

In addition to specifying output port sample times, you can force
the fixed point data types on output ports. For example, setting the
Data Type property of an 8-bit output port to Signed and setting its
Fraction Length property to 5 would force the data type to sfix8_En5.

Note The Data Type and Fraction Length properties apply only to

• VHDL signals of any logic type, such asSTD_LOGIC or
STD_LOGIC_VECTOR

• Verilog signals of wire or reg type

Input/output ports can be used here as well; specify port as both input
and output.

The Timescales pane lets you choose an optimal timing relationship
between Simulink and the Incisive simulator. You can configure either a
relative timing relationship (Simulink seconds correspond to an Incisive
simulator-defined tick interval) or an absolute timing relationship
(Simulink seconds correspond to an absolute unit of Incisive simulator
time).

7-3

HDL Cosimulation

The Connection pane specifies the communications mode used
between Simulink and the Incisive simulator. If you use TCP socket
communication, this pane provides fields for specifying a socket port
and for the host name of a remote computer running the Incisive
simulator. The Connection pane also provides the option for bypassing
the cosim block during Simulink simulation.

The Clocks pane lets you create optional rising-edge and falling-edge
clocks that apply stimuli to your cosimulation model. You can either
specify an explicit period for each clock, or accept a default period of 2.
Simulink attempts to create a clock that has a 50% duty cycle and a
predefined phase that is inverted for the falling edge case.

Whether you have configured the Timescales pane for relative timing
mode or absolute timing mode, the following restrictions apply to clock
periods:

• If you specify an explicit clock period, you must enter a sample time
equal to or greater than 2 resolution units (ticks).

• If the clock period (whether explicitly specified or defaulted) is not an
even integer, Simulink cannot create a 50% duty cycle, and therefore
the Link for Cadence Incisive interface creates the falling edge at

clockperiod / 2

(rounded down to the nearest integer).

The following figure shows a timing diagram that includes rising-edge
and falling-edge clocks with a Simulink sample period of T=10 and an
Incisive simulator resolution limit of 1 ns. The figure also shows that
given those timing parameters, the clock duty cycle is 50%.

7-4

HDL Cosimulation

7	��

38:	����	�����

&����)
�	�����

��������	������	!����
;	�<78

(��	���������	&���������	�����

�

$�����)
�	�����

For more information on calculating relative and absolute timing modes,
see “Defining the Simulink and HDL Simulator Timing Relationship”
on page 4-9 in Chapter 4, “Modeling and Verifying an HDL Design with
Simulink”.

The Tcl pane provides a way of specifying tools command language
(Tcl) commands to be executed before and after the Incisive simulator
simulates the HDL component of your Simulink model. The
Pre–simulation commands field on this pane is particularly useful
for simulation initialization and startup operations, but it cannot be
used to change simulation state.

Note You must make sure that signals being used in cosimulation
have read/write access (this is done through the HDL simulator – see
product documentation for details). This rule applies to all signals on
the Ports, Clocks, and Tcl panes.

Dialog
Box

The Block Parameters dialog box consists of four tabbed panes of
configuration options:

• “Ports Pane” on page 7-6

7-5

HDL Cosimulation

• “Connection Pane” on page 7-12

• “Timescales Pane” on page 7-15

• “Clocks Pane” on page 7-18

• “Tcl Pane” on page 7-20

Ports Pane

The list at the center of the pane displays HDL signals corresponding to
ports on the HDL Cosimulation block.

Maintain this list with the buttons on the right of the pane:

• Auto Fill — Transmit a port information request to the Incisive
simulator. The port information request returns port names and
information from an HDL model under simulation in the Incisive
simulator, and automatically enters this information into the ports
list. See “Obtaining Signal Information Automatically from the

7-6

HDL Cosimulation

Incisive Simulator” on page 4-27 for a detailed description of this
feature.

• New — Add a new signal to the list and select it for editing.

• Delete — Remove a signal from the list.

• Up — Move the selected signal up one position in the list.

• Down — Move the selected signal down one position in the list.

• Update — Update the displayed values in the list for the selected
signal. Note that this affects only the signal list. To commit edits to
the Simulink model, you must also click Apply.

To edit the properties of a signal, select the signal from the list and set
the desired values in the fields at the bottom of the pane. Then, click
Update to enter the new values into the list. The properties of a signal
are as follows.

Full HDL Name
Specifies the signal pathname, using the Incisive simulator
pathname syntax. For example, a pathname for an input port
might be manchester.samp. The signal can be at any level of
the HDL design hierarchy. The HDL Cosimulation block port
corresponding to the signal is labeled with the Full HDL Name.

Specifying port/signal and module paths. These rules are for
signal/port and module path specifications for Simulink. Other
specifications may work but are not guaranteed to work in this or
future releases. For MATLAB path specifications, see “Specifying
Port/Signal and Module Paths” on page 2-4.

• If the top level is Verilog:

— Path specification must start with a top-level module name.

— Path specification can include ".", "/", or ":" as path
delimiters, but cannot include a mixture.

— The leaf module or signal may be either VHDL or Verilog.

7-7

HDL Cosimulation

The following are valid signal and module path specification
examples:

top.port_or_sig
/top/sub/port_or_sig
top:sub:port_or_sig
top
top/sub
top.sub1.sub2

The following are invalid signal and module path specification
examples:

top.sub/port_or_sig

• If the top level is VHDL:

— Path specification can include the top-level module or begin
with ":" to represent the top-level module.

— Path specification can include ".", "/", or ":" as path
delimiters, but cannot include a mixture.

— The leaf module or signal may be either VHDL or Verilog.

The following are valid signal and module path specification
examples:

top.port_or_sig
top/sub/port_or_sig
:sub:port_or_sig
top
top/sub
top.sub1.sub2
:
:sub

The following are invalid signal and module path specification
examples:

7-8

HDL Cosimulation

top.sub/port_or_sig
sub:port_or_sig

Note You can copy signal pathnames directly from the HDL
simulator wave window and paste them into the Full HDL Name
field, using the standard copy and paste commands in the Incisive
simulator and Simulink (as long as you use the ‘Path.Name’ view
and not ‘Db::Path.Name’ view). After pasting a signal pathname
into the Full HDL Name field, you must click the Update button
to complete the paste operation and update the signal list.

I/O Mode
Select either Input, Output, or both.

Input designates signals of your HDL model that are to be driven
by Simulink. Simulink deposits values on the specified the
Incisive simulator signal at the signal’s sample rate.

Note When you define a block input port, make sure that only
one source is set up to drive input to that signal. For example, you
should avoid defining an input port that has multiple instances. If
multiple sources drive input to a single signal, your simulation
model may produce unexpected results.

Output designates signals of your HDL model that are to be read
by Simulink. For output signals, you must specify an explicit
sample time. You can also specify a data type, if desired (see Date
Type and Fraction Length in a following section).

To specify Inout ports of your HDL model, specify one entry for
the signal in the Ports Pane as an input and another entry as
an output.

7-9

HDL Cosimulation

Sample Time
This property is enabled only for output signals. You must specify
an explicit sample time.

Sample Time represents the time interval between consecutive
samples applied to the output port. The default sample time
is 1. The exact interpretation of the output port sample time
depends on the settings of the Timescales pane of the HDL
Cosimulation block (see “Timescales Pane” on page 7-15). See also
“Representation of Simulation Time” on page 4-8.

Data Type
Fraction Length

These two related parameters apply only to output signals.

The Data Type property is enabled only for output signals. You
can direct Simulink to determine the data type, or you can assign
an explicit data type (with option fraction length). By explicitly
assigning a data type, you can force fixed point data types on
output ports of an HDL Cosimulation block.

The Fraction Length property specifies the size, in bits, of
the fractional part of the signal in fixed-point representation.
Fraction Length is enabled when the Data Type property is
not set to Inherit.

Output port data types are determined by the signal width and by
the Data Type and Fraction Length properties of the signal.

Note The Data Type and Fraction Length properties apply
only to

• VHDL signals of any logic type, such as STD_LOGIC or
STD_LOGIC_VECTOR

• Verilog signals of wire or reg type

7-10

HDL Cosimulation

To assign a port data type, set the Data Type and Fraction
Length properties as follows:

• Select Inherit from the Data Type list if you want Simulink
to determine the data type.

Inherit is the default setting. When Inherit is selected, the
Fraction Length edit field is disabled.

Simulink attempts to compute the data type of the signal
connected to the output port by backward propagation. For
example, if a Signal Specification block is connected to an
output, Simulink will force the data type specified by Signal
Specification block on the output port.

If Simulink cannot determine the data type of the signal
connected to the output port, it will query the Incisive simulator
for the data type of the port. As an example, if the Incisive
simulator returns the VHDL data type STD_LOGIC_VECTOR for a
signal of size N bits, the data type ufixN is forced on the output
port. (The implicit fraction length is 0.)

• Select Signed from the Data Type list if you want to explicitly
assign a signed fixed point data type. When Signed is selected,
the Fraction Length edit field is enabled. The port is assigned
a fixed point type sfixN_EnF, where N is the signal width and F
is the Fraction Length.

For example, if you specify Data Type as Signed and a
Fraction Length of 5 for a 16-bit signal, Simulink forces the
data type to sfix16_En5. For the same signal with a Data
Type set to Signed and Fraction Length of -5, Simulink
forces the data type to sfix16_E5.

• Select Unsigned from the Data Type list if you want to
explicitly assign an unsigned fixed point data type When
Unsigned is selected, the Fraction Length edit field is
enabled. The port is assigned a fixed point type ufixN_EnF,
where N is the signal width and F is the Fraction Length.

7-11

HDL Cosimulation

For example, if you specify Data Type as Unsigned and a
Fraction Length of 5 for a 16-bit signal, Simulink forces the
data type to ufix16_En5. For the same signal with a Data
Type set to Unsigned and Fraction Length of -5 , Simulink
forces the data type to ufix16_E5.

Connection Pane

This figure shows the default configuration of the Connection pane.
By default, the block is configured for shared memory communication
between Simulink and the Incisive simulator, running on a single
computer.

If you select TCP/IP socket mode communication, the pane displays
additional properties, as shown in the following figure.

7-12

HDL Cosimulation

the HDL Simulator is running on this computer
Select this option if you want to run Simulink and the Incisive
simulator on the same computer. When both applications run on
the same computer, you have the choice of using shared memory
or TCP sockets for the communication channel between the two
applications. If this option is deselected, only TCP/IP socket mode
is available, and the Connection method list is disabled.

Connection method
This list is enabled when the HDL Simulator is running on
this computer is selected. Select Socket if you want Simulink
and the Incisive simulator to communicate via a designated
TCP/IP socket. Select Shared memory if you want Simulink and
the Incisive simulator to communicate via shared memory. For
more information on these connection methods, see “Configuring
the Communication Link” on page 4-32.

7-13

HDL Cosimulation

Host name
If Simulink and the Incisive simulator are running on different
computers, this text field is enabled. The field specifies the host
name of the computer that is running your HDL simulation in the
Incisive simulator.

Port number or service
Indicate a valid TCP socket port number or service for your
computer system (if not using shared memory). For information
on choosing TCP socket ports, see “Choosing TCP/IP Socket Ports”
on page 1-18.

Show connection info on icon
When this option is selected, Simulink indicates information
about the selected communication method and (if applicable)
communication options information on the HDL Cosimulation
block icon. If shared memory is selected, the icon displays the
string SharedMem. If TCP socket communication is selected,
the icon displays the host name and port number in the format
hostname:port.

In a model that has multiple HDL Cosimulation blocks, with each
communicating to different instances of the Incisive simulator in
different modes, this information helps to distinguish between
different cosimulations.

Connection Mode
If you want to bypass the HDL simulator when running a
Simulink simulation, use these options to specify what type of
simulation connection you want. Select one of the following:

• Full Simulation: Confirm interface and run HDL simulation
(default).

• Confirm Interface Only: Check HDL simulator for proper
signal names, dimensions, and data types, but do not run HDL
simulation.

• No Connection: Do not communicate with the HDL simulator.
The HDL simulator does not need to be started.

7-14

HDL Cosimulation

With the 2nd and 3rd options, the Link for Cadence Incisive
interface does not communicate with the HDL simulator during
Simulink simulation.

Timescales Pane

The Timescales pane of the HDL Cosimulation block parameters
dialog lets you choose an optimal timing relationship between Simulink
and the Incisive simulator. The following figure shows the default
settings of the Timescales pane.

The Timescales pane specifies a correspondence between one second
of Simulink time and some quantity of Incisive simulator time. This
quantity of Incisive simulator time can be expressed in one of the
following ways:

7-15

HDL Cosimulation

• In relative terms (i.e., as some number of Incisive simulator ticks). In
this case, the cosimulation is said to operate in relative timing mode.
Relative timing mode is the default.

To use relative mode, select Tick from the list on the right, and enter
the desired number of ticks in the edit box. For example, in the
figure below the Timescales pane is configured for a relative timing
correspondence of 10 Incisive simulator ticks to 1 Simulink second.

• In absolute units (such as milliseconds or nanoseconds). In this case,
the cosimulation is said to operate in absolute timing mode.

To use absolute mode, select a unit of absolute time (available units
are fs, ps, ns, us, ms, s) from the list on the right. Then enter
a scale factor in the left-side edit box. For example, in the figure
below the Timescales pane is configured for an absolute timing
correspondence of 1 Incisive simulator second to 1 Simulink second.

To set the absolute time, you must know the value of the HDL
simulator tick (resolution unit) to understand how Link for Cadence
Incisive software handles the timing of the falling edge when the
duty cycle does not fall at 50%. The following restrictions apply to
clock periods:

- You must enter a sample time equal to or greater than 2 resolution
units (ticks) (no falling edge can occur in < 2 ticks).

7-16

HDL Cosimulation

- If the clock period (whether explicitly specified or defaulted) is
not an even integer multiple, Simulink cannot create a 50% duty
cycle, and therefore the Link for Cadence Incisive software creates
the falling edge at

clockperiod / 2

(rounded down to the nearest integer).

You must know how many ticks your selected time represents so
that you know how the falling edge will occur. This next example
demonstrates how to calculate the number of HDL simulator
ticks for an absolute clock period of 1 Simulink second = 3 HDL
simulator seconds.

1 HDL simulator second = 109 HDL simulator ns

1 HDL simulator tick = 10 HDL simulator ns

1 HDL simulator second = (109/10) or 108 HDL simulator ticks

1 Simulink seconds = 3 HDL simulator seconds

1 Simulink second = 3x108 HDL simulator ticks

In this example, the number of ticks is greater than 2 and an
even integer multiple, therefore the duty cycle will fall at 50%. If
1 HDL simulator tick was instead equal to 13 ns, the end result
would have the falling edge occur at 1153846153 ticks, or a just
under 50% duty cycle.

For more information on calculating relative and absolute timing
modes, see “Defining the Simulink and HDL Simulator Timing
Relationship” on page 4-9 in Chapter 4, “Modeling and Verifying
an HDL Design with Simulink”.

For detailed information on the relationship between Simulink and the
Incisive simulator during cosimulation, and on the operation of relative
and absolute timing modes, see “Representation of Simulation Time” on
page 4-8 in Chapter 4, “Modeling and Verifying an HDL Design with
Simulink”.

7-17

HDL Cosimulation

Clocks Pane

The scrolling list at the center of the pane displays HDL clocks that
drive values to the HDL signals that you are modeling, using the
deposit method.

Maintain the list of clock signals with the buttons on the right of the
pane:

• New — Add a new clock signal to the list and select it for editing.

• Delete — Remove a clock signal from the list.

• Up — Move the selected clock signal up one position in the list.

• Down — Move the selected clock signal down one position in the list.

• Update — Update the displayed values in the list for the selected
clock signal. Note that this affects only the signal list. To commit
edits to the Simulink model, you must also click Apply.

7-18

HDL Cosimulation

To edit the properties of a clock signal, select it from the list and enter
(or select) desired values in the fields at the bottom of the pane. Then
click Update to enter the new values into the list. The properties of a
clock signal are

Full HDL Name
Specify each clock as a signal pathname, using the Incisive
simulator pathname syntax. A sample pathname for a clock might
be manchester.clk.

For information about and requirements for path specifications in
Simulink, see "Full HDL Name" under “Ports Pane” on page 7-6.

Note You can copy signal pathnames directly from the HDL
simulator wave window and paste them into the Full HDL Name
field, using the standard copy and paste commands in the Incisive
simulator and Simulink (as long as you use the ‘Path.Name’ view
and not ‘Db::Path.Name’ view). After pasting a signal pathname
into the Full HDL Name field, you must click the Update button
to complete the paste operation and update the signal list.

Edge
Select Rising or Falling to specify either a rising-edge clock or a
falling-edge clock.

Period
You must either specify the clock period explicitly, or accept the
default period of 2.

If you specify an explicit clock period, you must enter a sample
time equal to or greater than 2 resolution units (ticks).

If the clock period (whether explicitly specified or defaulted) is
not an even integer, Simulink cannot create a 50% duty cycle,

7-19

HDL Cosimulation

and therefore the Link for Cadence Incisive software creates the
falling edge at

clockperiod / 2

(rounded down to the nearest integer).

Note Vectored signals in the Clocks pane are not supported. Signals
must be logic types with ’1’ and ’0’ values.

Tcl Pane

Pre-simulation commands
Tcl commands to be executed before the Incisive simulator
simulates the HDL component of your Simulink model. You can
specify one Tcl command per line in the text box, or enter multiple

7-20

HDL Cosimulation

commands per line by appending each command with a semicolon
(;), the standard Tcl concatenation operator.

Alternatively, you can create an Incisive simulator Tcl script that
lists Tcl commands and then specify that file with the Incisive
simulator source command as follows:

source mycosimstartup.script_extension

Use of this field can range from something as simple as a
one-line echo command to confirm that a simulation is running
to a complex script that performs an extensive simulation
initialization and startup sequence.

Note The command string or Tcl script that you specify for
this parameter cannot include commands that load an Incisive
simulator project or modify simulator state. For example, they
cannot include commands such as run, stop, or reset.

Post-simulation commands
Tcl commands to be executed after the Incisive simulator
simulates the HDL component of your Simulink model. You can
specify one Tcl command per line in the text box or enter multiple
commands per line by appending each command with a semicolon
(;), the standard Tcl concatenation operator.

Alternatively, you can create an Incisive simulator Tcl script that
lists Tcl commands and then specify that file with the Incisive
simulator source command as follows:

source mycosimcleanup.script_extension

7-21

HDL Cosimulation

Notes

• You can include the exit command in an after simulation Tcl
script to force the Incisive simulator to shut down at the end of
a cosimulation session. To ensure that all other after simulation
Tcl commands specified for the model have an opportunity to
execute, specify all after simulation Tcl commands in a single
cosimulation block and place exit at the end of the command
string or Tcl script.

The following is an example of a Tcl script when the -gui
argument was used with hdlsimmatlab or hdlsimulink:

after 1000 {ncsim -submit exit}

This next example is of a Tcl exit script to use when the -tcl
argument was used with hdlsimmatlab or hdlsimulink:

after 1000 {exit}

• With the exception of exit, the command string or Tcl script
that you specify cannot include commands that load an Incisive
simulator project or modify simulator state. For example, they
cannot include commands such as run, stop, or reset.

7-22

To VCD File

Purpose Generate a value change dump (VCD) file

Library Link for Cadence Incisive

Description The To VCD File block generates a VCD file that contains information
about changes to signals connected to the block’s input ports and names
the file with the specified file name. VCD files can be useful during
design verification. Some examples of how you might apply VCD files
include

• For comparing results of multiple simulation runs, using the same or
different simulator environments

• As input to post-simulation analysis tools

• For porting areas of an existing design to a new design

In addition, VCD files include data that can be graphically displayed or
analyzed with postprocessing tools. Examples of postprocessing include
the extraction of data pertaining to a particular section of a design
hierarchy or data generated during a specific time interval.

Using the Block Parameters dialog box, you can specify the following:

• The file name to be used for the generated file

• The number of block input ports that are to receive signal data

VCD files can grow very large for larger designs or smaller designs
with longer simulation runs. However, the size of a VCD file generated
by the To VCD File block is limited only by the maximum number of
signals (and symbols) supported, which is 943 (830,584). Each bit maps
to one symbol.

For a description of the VCD file format, see “VCD File Format” on
page 4-47.

7-23

To VCD File

Dialog
Box

VCD file name
The file name to be used for the generated VCD file. If you specify
a file name only, Simulink places the file in your current MATLAB
directory. Specify a complete pathname to place the generated file
in a different location. If you specify the same name for multiple
To VCD File blocks, Simulink automatically adds a numeric
postfix to identify each instance uniquely.

If you want the generated file to have a .vcd file type extension,
you must specify it explicitly.

Caution Do not give the same file name to different VCD blocks.
Doing so results in invalid VCD files.

7-24

To VCD File

Number of input ports
The number of block input ports on which signal data is to be
collected. The block can handle up to 943 (830,584) signals, each of
which maps to a unique symbol in the VCD file.

Note The To VCD File block does not support floating point
signal types.

Note Because multi-dimensional signals are not part of the VCD
specification, they are flattened to a 1D vector in the file.

Timescale
Choose an optimal timing relationship between Simulink and
the HDL simulator.

The timescale options specify a correspondence between one
second of Simulink time and some quantity of HDL simulator
time. This quantity of HDL simulator time can be expressed in
one of the following ways:

• In relative terms (i.e., as some number of Incisive simulator
ticks). In this case, the cosimulation is said to operate in
relative timing mode. Relative timing mode is the default.

To use relative mode, select Tick from the pop-up list at the
label in the HDL simulator, and enter the desired number of
ticks in the edit box at 1 second in Simulink corresponds
to. The default value is 1 Tick.

• In absolute units (such as milliseconds or nanoseconds). In
this case, the cosimulation is said to operate in absolute timing
mode.

To use absolute mode, select the desired resolution unit from
the pop-up list at the label in the HDL simulator (available

7-25

To VCD File

units are fs, ps, ns, us, ms, s), and enter the desired number
of resolution units in the edit box at 1 second in Simulink
corresponds to. Then, set the value of the HDL simulator
tick by selecting 1, 10, or 100 from the pop–up list at 1 HDL
Tick is defined as and the resolution unit from the pop-up
list at defined as .

7-26

Index

IndexA
Absolute timing mode 4-12
addresses, Internet 1-18
application software 1-20
application specific integrated circuits

(ASICs) 1-2
applications 1-3

coding Link for Cadence Incisive software
overview of 2-2

programming Link for Cadence Incisive
software
overview of 2-2

arguments
for hdlsimmatlab command 6-2
for hdlsimulink command 6-3
for matlabcp command 6-5
for matlabtb command 6-10
for matlabtbeval command 6-15

array indexing
differences between MATLAB and

VHDL 2-11
arrays

converting to 2-21
indexing elements of 2-11
of VHDL data types 2-6

ASICs (application specific integrated
circuits) 1-2

Auto fill
in Ports pane of HDL Cosimulation block 7-2
using in Ports pane 4-23

B
behavioral model 1-3
BIT data type 2-6

conversion of 2-11
bit vector

converting for MATLAB 2-20
BIT_VECTOR data type 2-6

conversion of 2-11

block input ports parameter
description of 7-2
mapping signals with 4-23

block latency 4-16
block library

description of 4-19
Link for Cadence Incisive software 1-5

block output ports parameter
description of 7-2
mapping signals with 4-23

block Parameters dialog
for HDL Cosimulation block 4-23

Block Parameters dialog
for To VCD File block 4-44

block ports
mapping signals to 4-23
requirements for HDL Cosimulation

blocks 4-20
blocks

HDL Cosimulation
applying configuration settings for 4-40
configuring 4-20
description of 7-2

To VCD File
configuring 4-44
description of 7-23
generating VCD files with 4-44

blocksets
for creating hardware models 4-5
for EDA applications 4-5
installing 1-22

breakpoints 3-20

C
callback specification 2-16
callback timing 3-12
-cancel option 6-10
CHARACTER data type 2-6

conversion of 2-11

Index-1

Index

checklists
environment requirements 1-13
HDL Cosimulation block requirements 4-20

client
for MATLAB and HDL simulator links 1-7
for Simulink and HDL simulator links 1-8

client/server environment 1-7
clocks

requirements for HDL Cosimulation
blocks 4-20

specifying for HDL Cosimulation blocks 4-34
Clocks pane

configuring block clocks with 4-34
description of 7-2

column-major numbering 2-11
comm status field

checking with hdldaemon function 3-5
description of 5-3

commands, HDL simulator 6-1
See also HDL simulator commands

commands, Incisive simulator 6-1
communication

configuring for blocks 4-32
features 1-5
initializing for HDL simulator and MATLAB

session 3-13
modes of 1-9
requirements for HDL Cosimulation

blocks 4-20
socket ports for 1-18

communication channel
checking identifier for 3-5

communication modes
checking 3-5
specifying for HDL Cosimulation block 4-20
specifying with hdldaemon function 3-7

Communications Blockset
as optional software 1-20
using for EDA applications 4-5

components 1-5

composite data types
conversions of 2-11
VHDL 2-6

configurations
deciding on 1-15
multiple-link 1-15
single-system 1-15
valid for MATLAB and the HDL

simulator 1-16
valid for Simulink and the HDL

simulator 1-17
Connection pane

configuring block communication with 4-32
description of 7-2

connections status field
checking with hdldaemon function 3-5
description of 5-3

connections, link
checking number of 3-5
TCP/IP socket 1-18

Continue button, MATLAB 3-20
Continue option 3-20
continuous signals 4-8
cosimulation 1-5

configuring a HDL Cosimulation block
for 4-20

controlling MATLAB 3-1
overview of 3-3

logging changes to signal values during 4-44
requirements for 4-20
starting MATLAB 3-1

overview of 3-3
starting with Simulink 4-41

cosimulation block 4-20
See also HDL Cosimulation block

cosimulation environment 1-7
Cosimulation timing

absolute mode 7-2
relative mode 7-2

Index-2

Index

D
data types

conversions of 2-11
converting for HDL simulator 2-21
converting for MATLAB 2-20
unsupported VHDL 2-6
VHDL port 2-6

dbstop function 3-20
dec2mvl function

description of 5-2
delta time 4-16
demos 1-28
deposit

changing signals with 4-7
for iport parameter 2-16
with force commands 3-18

design process, hardware 1-3
dialogs

for HDL Cosimulation block 7-2
for To VCD File block 7-23

discrete blocks 4-8
do command 4-37
DO files

specifying for HDL Cosimulation blocks 4-37
documentation overview 1-27
double values

as representation of time 3-12
converting for HDL simulator 2-21
converting for MATLAB 2-20

dspstartup M-file 4-18
duty cycle 4-34

E
EDA (Electronic Design Automation) 1-2
Electronic Design Automation (EDA) 1-2
End Simulation option, HDL simulator 3-22
entities

coding for MATLAB verification 2-3
naming 2-4

sample definition of 2-8
specifying ports for 2-6

enumerated data types 2-6
conversion of 2-11
converting to 2-21

environment requirements 1-13
environment, cosimulation 1-7
examples 4-5

dec2mvl function 5-2
hdldaemon function 5-3
hdlsimmatlab command 6-2
hdlsimulink command 6-3
matlabcp command 6-5
matlabtb command 6-10
matlabtbeval command 6-15
mvl2dec function 5-10
nclaunch function 5-11
nomatlabtb command 6-18
test bench function 2-26
See also Manchester receiver Simulink model

F
-falling option 6-10

specifying scheduling options with 3-13
falling-edge clocks

creating for HDL Cosimulation blocks 4-34
description of 7-2
specifying as scheduling options 3-11
specifying for HDL Cosimulation block 4-20

Falling-edge clocks parameter
specifying block clocks with 4-34

features, product 1-5
field programmable gate arrays (FPGAs) 1-2
files

generating VCD 4-44
VCD 4-47

force command
applying simulation stimuli with 3-18

Index-3

Index

resetting clocks during cosimulation
with 4-41

FPGAs (field programmable gate arrays) 1-2
Frame-based processing 4-42

in cosimulation 4-42
performance improvements gained from 4-42
requirements for use of 4-42
restrictions on use of 4-42

functions 5-1
resolution 4-7
See also MATLAB functions

G
Go Until Cursor option, MATLAB 3-20

H
hardware description language (HDL) 1-2
hardware design process 1-3
hardware model design

creating in Simulink 4-5
HDL (hardware description language) 1-2
HDL Cosimulation block

adding to a Simulink model 4-19
applying configuration settings for 4-40
black boxes representing 4-5
configuration requirements for 1-15
configuring 4-20
configuring clocks for 4-34
configuring communication for 4-32
configuring ports for 4-23
configuring Tcl commands for 4-37
description of 7-2
design decisions for 4-5
handling of signal values for 4-7
in Link for Cadence Incisive simulation

environment 1-7
opening Block Parameters dialog for 4-23
scaling simulation time for 4-8

valid configurations for 1-17
HDL Cosimulation block output ports 4-28
HDL design 4-3
HDL designs

using port information for 2-17
validating 2-17

HDL entities or modules
specifying ports for 2-6

HDL models 1-3
adding to Simulink models 4-19
compiling 2-9
configuring Simulink for 4-18
cosimulation 1-3
porting 4-44
running in Simulink 4-41
testing in Simulink 4-41
verifying 1-3
verifying port direction modes for 2-17
See also HDL models

HDL simulator
handling of signal values for 4-7
initializing for MATLAB session 3-13
quitting 3-22
setting up during installation 1-23
simulation time for 4-8
specifying version of 3-10
starting from MATLAB 3-10
working with MATLAB links to 1-10
working with Simulink links to 1-11

HDL simulator commands
force

applying simulation stimuli with 3-18
resetting clocks during cosimulation

with 4-41
hdlsimmatlab

description of 6-2
matlabtb

initializing HDL simulator with 3-13
matlabtbeval

initializing HDL simulator with 3-13

Index-4

Index

specifying scheduling options with 3-11
vcd2wlf 4-44

HDL support
Verilog 1-5
VHDL 1-5

hdldaemon function
checking link status of 3-5
configuration restrictions for 1-15
description of 5-3
starting 3-7

hdlsimdir property
specifying with nclaunch function 3-10

hdlsimmatlab command
description of 6-2

hdlsimulink command
description of 6-3

help 1-27
Host name parameter

description of 7-2
specifying block communication with 4-32

hostnames
identifying Incisive simulator server 4-32
identifying MATLAB server 3-13
identifying server with 1-17

I
IN direction mode 2-6

verifying 2-17
Incisive simulator

as required software 1-20
in Link for Cadence Incisive simulation

environment 1-7
installing 1-22

Incisive simulator commands
hdlsimmatlab

description of 6-2
hdlsimulink

description of 6-3

matlabcp
description of 6-5

matlabtb
description of 6-10

matlabtbeval
description of 6-15

nomatlabtb 6-18
Incisive simulator running on this computer

parameter
description of 7-2
specifying block communication with 4-32

inout data type 2-6
inout direction mode 2-6
INOUT direction mode 2-6

verifying 2-17
INOUT ports

specifying 7-2
input 2-6

See also input ports
input data type 2-6
input direction mode 2-6
input ports

attaching to signals 4-7
for HDL model 2-6
for MATLAB component function 2-33
for test bench function 2-16
mapping signals to 4-23
simulation time for 4-8
specifying block 4-20

installation
of Link for Cadence Incisive software 1-23
of related software 1-22

installation of Link for Cadence Incisive
software 1-13

integer data type
conversion of 2-11

INTEGER data type 2-6
conversion of 2-11

Internet address 1-18
identifying server with 1-17

Index-5

Index

specifying 3-13
interprocess communication identifier 3-5
ipc_id status field

checking with hdldaemon function 3-5
description of 5-3

iport parameter 2-16

K
kill option

description of 5-3

L
latency, block 4-16
Link for Cadence Incisive software

block library 1-5
using to add HDL to Simulink with 4-19

blocks 1-15
definition of 1-2
installing 1-23
setting up the HDL simulator for 1-23

link status
checking MATLAB server 3-5
function for acquiring 5-3

links
MATLAB and the HDL simulator 1-7
Simulink and the HDL simulator 1-8

M
MATLAB

as required software 1-20
in Link for Cadence Incisive simulation

environment 1-7
installing 1-22
quitting 3-22
working with HDL simulator links to 1-10

MATLAB component functions
adding to MATLAB search path 2-35
defining 2-33

specifying required parameters for 2-33
MATLAB data types

conversion of 2-11
MATLAB functions 5-1

coding for HDL verification 2-10
dbstop 3-20
dec2mvl

description of 5-2
defining 2-16
hdldaemon 3-7

description of 5-3
mvl2dec

description of 5-10
naming 2-15
nclaunch

description of 5-11
programming for HDL verification 2-10
sample of 2-26
scheduling invocation of 3-11
specifying required parameters for 2-16
test bench 1-7
which 2-35

MATLAB link sessions
controlling 3-20

overview 3-3
logging changes to signal values during 4-44
monitoring 3-20
scheduling invocation of 3-11
starting

overview 3-3
stopping 3-22

MATLAB search path 2-35
MATLAB server

checking link status with 3-5
configuration restrictions for 1-15
configurations for 1-16
function for invoking 1-7
identifying in a network configuration 1-17
starting 3-7

matlabcp command

Index-6

Index

description of 6-5
matlabtb command

description of 6-10
initializing HDL simulator for MATLAB

session 3-13
specifying scheduling options with 3-11

matlabtbeval command
description of 6-15
initializing HDL simulator for MATLAB

session 3-13
specifying scheduling options with 3-11

-mfunc option
specifying test bench or component function

with 3-13
with matlabcp command 6-5
with matlabtb command 6-10
with matlabtbeval command 6-15

Mixed-HDL model support
limitations 1-5

models
compiling. See HDL models
getting port information of 2-16

modes
communication 3-7
port direction 2-17

module names
specifying paths

in MATLAB 2-4
in Simulink 7-2

modules
coding for MATLAB verification 2-3
naming 2-4
specifying ports for 2-6

multirate signals 4-15
mvl2dec function

description of 5-10

N
names

for test bench functions 2-15
for Verilog modules 2-4
for VHDL entities 2-4
shared memory communication channel 3-5
verifying port 2-17

NATURAL data type 2-6
conversion of 2-11

nclaunch function
description of 5-11
starting HDL simulator with 3-10

nclaunchdir property
with nclaunch function 5-11

network configuration 1-17
network environment 1-7
nomatlabtb command 6-18
Number of input ports parameter 7-23

configuring To VCD File block with 4-44
Number of output ports parameter

configuring To VCD File block with 4-44
description of 7-23

numeric data
converting for HDL simulator 2-21
converting for MATLAB 2-20

O
online help 1-27
oport parameter 2-16
options

for hdlsimulink command 6-3
for matlabcp command 6-5
for matlabtb command 6-10
for matlabtbeval command 6-15
kill 5-3
property

with hdldaemon function 5-3
with nclaunch function 5-11

status 5-3

Index-7

Index

OS platform requirements. See Link for Cadence
Incisive product requirements page on The
MathWorks web site

OS platforms. See Link for Cadence Incisive
product requirements page on The
MathWorks web site

OUT direction mode 2-6
verifying 2-17

output data type 2-6
output direction mode 2-6
output ports

for HDL model 2-6
for MATLAB component function 2-33
for test bench function 2-16
mapping signals to 4-23
simulation time for 4-8
specifying block 4-20

Output sample time parameter
description of 7-2
specifying sample time with 4-23

P
parameters

for HDL Cosimulation block 7-2
for To VCD File block 7-23
required for MATLAB component

functions 2-33
required for test bench functions 2-16

path specification
for ports/signals and modules

in MATLAB 2-4
in Simulink 7-2

phase, clock 4-34
platform support 1-5

required 1-20
port names

specifying paths
in MATLAB 2-4
in Simulink 7-2

verifying 2-17
Port number or service parameter

description of 7-2
specifying block communication with 4-32

port numbers 1-18
checking 3-5
specifying for HDL simulator 3-11
specifying for MATLAB server 3-7

portinfo parameter 2-16
portinfo structure 2-17
ports

getting information about 2-16
specifying direction modes for 2-6
specifying for HDL entities or modules 2-6
specifying VHDL data types for 2-6
using information about 2-17
verifying data type of 2-17
verifying direction modes for 2-17
Verilog data types 2-6

Ports pane
Auto fill option 7-2
configuring block ports with 4-23
description of 7-2
using Auto fill 4-23

ports, block
mapping signals to 4-23
requirements for 4-20

Post– simulation command parameter
specifying block Tcl commands with 4-37

postprocessing tools 4-44
Post–simulation command parameter

description of 7-2
Pre– simulation command parameter

specifying block simulation Tcl commands
with 4-37

Pre–simulation command parameter
description of 7-2

properties
for hdldaemon function 5-3
for nclaunch function 5-11

Index-8

Index

for starting MATLAB server 3-7
nclaunchdir

with nclaunch function 5-11
socket 5-3
socketsimulink 5-11
startupfile 5-11
tclstart

with nclaunch function 5-11
time

description of 5-3
property option

for hdldaemon function 5-3
for nclaunch function 5-11

R
rate converter 4-15
real data

converting for HDL simulator 2-21
converting for MATLAB 2-20

REAL data type 2-6
conversion of 2-11

real values, as time 3-12
reg data type

conversion of 2-11
Relative timing mode 4-10
-repeat option 6-5

specifying scheduling options with 3-13
requirements

application software 1-20
checking product 1-20
environment 1-13
for HDL Cosimulation block 4-20
platform 1-20

resolution functions 4-7
resolution limit 2-17
-rising option 6-5

specifying scheduling options with 3-13
rising-edge clocks

creating for HDL Cosimulation blocks 4-34

description of 7-2
specifying as scheduling options 3-11
specifying for HDL Cosimulation block 4-20

Rising-edge clocks parameter
specifying block clocks with 4-34

run command 3-20
Run option, MATLAB 3-20

S
sample periods 4-5

See also sample times
sample times 4-16

design decisions for 4-5
handling across simulation domains 4-7
specifying for block output ports 4-23

Sample-based processing 4-42
Save and Run option, MATLAB 3-20
scalar data types

conversions of 2-11
VHDL 2-6

scheduling options 3-11
script

HDL simulator setup 1-23
search path 2-35
sensitivity lists 3-11
-sensitivity option 6-5

specifying scheduling options with 3-13
server activation 5-3
server shutdown 5-3
server, MATLAB

checking link status of MATLAB 3-5
for MATLAB and HDL simulator links 1-7
for Simulink and HDL simulator links 1-8
identifying in a network configuration 1-17
starting MATLAB 3-7

service names
TCP/IP 1-18

Set/Clear Breakpoint option, MATLAB 3-20
shared memory communication 1-9

Index-9

Index

as a configuration option 1-15
specifying for HDL Cosimulation blocks 4-32
specifying with hdldaemon function 3-7

Shared memory parameter
description of 7-2
specifying block communication with 4-32

signal names
specifying paths

in MATLAB 2-4
in Simulink 7-2

signal pathnames
displaying 4-23
specifying for block clocks 4-34
specifying for block ports 4-23

Signal Processing Blockset
as optional software 1-20
using for EDA applications 4-5

signals
continuous 4-8
defining ports for 2-6
driven by multiple sources 4-7
exchanging between simulation domains 4-7
handling across simulation domains 4-7
how Simulink drives 4-7
logging changes to 4-44
logging changes to values of 4-44
mapping to block ports 4-23
multirate 4-15
read/write access for cosimulation 4-23
read/write access required 7-2

signed data 2-20
simulation analysis 4-44
simulation time 2-16

guidelines for 4-8
representation of 4-8
scaling of 4-8

simulations
comparing results of 4-44
ending 3-22
logging changes to signal values during 4-44

quitting 3-22
simulator resolution limit 2-17
simulators

handling of signal values between 4-7
Simulink

as optional software 1-20
configuration restrictions for 1-15
configuring for HDL models 4-18
creating hardware model designs with 4-5
driving cosimulation signals with 4-7
in Link for Cadence Incisive simulation

environment 1-7
installing 1-22
simulation time for 4-8
using with HDL simulator 4-1
working with HDL simulator links to 1-11

Simulink Fixed Point
as optional software 1-20
using for EDA applications 4-5

Simulink models
adding HDL models to 4-19

sink device
adding to a Simulink model 4-19
specifying block ports for 4-23
specifying clocks for 4-34
specifying communication for 4-32
specifying Tcl commands for 4-37

socket numbers 3-5
See also port numbers

-socket option
specifying TCP/IP socket with 3-13
with hdlsimulink command 6-3
with matlabcp command 6-5
with matlabtb command 6-10
with matlabtbeval command 6-15

socket port numbers 1-18
as a networking requirement 1-17
checking 3-5
specifying for HDL Cosimulation blocks 4-32
specifying with -socket option 3-13

Index-10

Index

socket property
description of 5-3
specifying with hdldaemon function 3-7

sockets 1-9
See also TCP/IP socket communication

socketsimulink property
description of 5-11

software
installing Link for Cadence Incisive 1-23
installing related applications 1-22
optional 1-20
required 1-20

source device
adding to a Simulink model 4-19
specifying block ports for 4-23
specifying clocks for 4-34
specifying communication for 4-32
specifying Tcl commands for 4-37

standard logic data 2-20
standard logic vectors

converting for HDL simulator 2-21
converting for MATLAB 2-20

start time 4-8
startup commands, HDL simulator 3-10
startupfile property

description of 5-11
specifying with nclaunch function 3-10

status option
checking value of 3-5
description of 5-3

status, link 3-5
STD_LOGIC data type 2-6

conversion of 2-11
STD_LOGIC_VECTOR data type 2-6

conversion of 2-11
STD_ULOGIC data type 2-6

conversion of 2-11
STD_ULOGIC_VECTOR data type 2-6

conversion of 2-11
Step button

in MATLAB 3-20
Step-In button, MATLAB 3-20
Step-Out button, MATLAB 3-20
stimuli, block internal 4-34
stop time 4-8
strings, time value 3-12
subtypes, VHDL 2-6

T
Tcl commands

added to script for execution at startup 1-23
added to startup script via nclaunch 5-11
configuring for block simulation 4-37
for HDL simulator 6-1
hdlsimmatlab 6-2
hdlsimulink 6-3
matlabcp 6-5
matlabtb 6-10
matlabtbeval 6-15
nomatlabtb 6-18
passed to simulator from hdldaemon 5-3
post-simulation

using set_param 4-37
pre-simulation

using set_param 4-37
requirements for HDL Cosimulation

blocks 4-20
specified in Tcl pane of HDL Cosimulation

block 7-2
specifying for HDL Cosimulation block 4-20
specifying with nclaunch function 3-10
specifying with tclstart property 3-10
when used with MATLAB 1-10
when used with Simulink 1-11

Tcl pane
description of 7-2

tclstart property
specifying with nclaunch function 3-10
with nclaunch function 5-11

Index-11

Index

TCP/IP alias. See service names
TCP/IP networking protocol 1-9

as a networking requirement 1-17
See also TCP/IP socket communication

TCP/IP socket communication
as a communication option 1-15
feature 1-5
mode 1-9
specifying with hdldaemon function 3-7
using service names 1-18

TCP/IP socket ports 1-18
specifying for HDL Cosimulation blocks 4-32
specifying with -socket option 3-13

test bench functions
adding to MATLAB search path 2-35
coding for HDL verification 2-10
defining 2-16
naming 2-15
sample of 2-26
specifying required parameters for 2-16

test bench sessions. See MATLAB link sessions
test benches 1-5

See also test bench functions
time 4-8

callback 2-16
delta 4-16
simulation 2-16

guidelines for 4-8
representation of 4-8

See also time values
TIME data type 2-6

conversion of 2-11
time property

description of 5-3
setting return time type with 3-7

time scale, VCD file 4-47
time units 3-13
time values 3-13

specifying as scheduling options 3-11
specifying with hdldaemon function 3-7

Timescales pane
description of 7-2

timing errors 4-8
Timing mode

absolute 4-30
configuring for cosimulation 4-30
relative 4-30

tnext parameter 2-16
controlling callback timing with 3-12
specifying as scheduling options 3-11
time representations for 3-12

tnow parameter 2-16
To VCD File block 1-5

configuring 4-44
description of 7-23
generating VCD files with 4-44
uses of 1-11

Tool Command Language. See Tcl commands
tools, postprocessing 4-44
tscale parameter 2-17
tutorials 1-28

U
unsigned data 2-20
unsupported data types 2-6
users, Link for Cadence Incisive software 1-4

V
value change dump (VCD) files. See VCD files
VCD file name parameter

configuring To VCD File block with 4-44
description of 7-23

VCD files 1-5
format of 4-47
generating 4-44
using 4-44

vcd2wlf command 4-44
vectors

Index-12

Index

converting for MATLAB 2-20
converting to 2-21

verification
coding functions for 2-10
hardware model 1-5

verification sessions
logging changes to signal values during 4-44
monitoring 3-20
running 3-20
stopping 3-22

Verilog data types
conversion of 2-11

Verilog models 1-3
See also HDL models

Verilog modules
coding for MATLAB verification 2-3
naming 2-4

VHDL data types
conversion of 2-11

VHDL entities

coding for MATLAB verification 2-3
naming 2-4
sample definition of 2-8

visualization
coding functions for 2-10

overview of 2-10

W
Wave Log Format (WLF) files 4-44
wave window, Incisive simulator 4-23
waveform files 4-44
which function 2-35
wire data type

conversion of 2-11
WLF files 4-44

Z
zero-order hold 4-8

Index-13

	toc
	Getting Started
	What Is the Link for Cadence Incisive Software?
	Typical Applications
	Expected Users
	Key Features
	VHDL and Verilog Language Support

	The Cosimulation Environment
	MATLAB and HDL Simulator Links
	Simulink and HDL Simulator Links

	Modes of Communication
	Working with MATLAB and the HDL Simulator
	Working with Simulink and the HDL Simulator

	Installation and Setup
	What Are Your Environment Requirements?
	Deciding on a Configuration
	MATLAB
	Simulink

	Identifying a Server in a Network Configuration
	Choosing TCP/IP Socket Ports
	TCP/IP Services

	Checking Product Requirements
	Installing Related Application Software
	Installing the Link for Cadence Incisive Software
	Setting Up the HDL Simulator for Use with the Link for Cadence I
	Setting Up Link for Cadence Incisive Software for Use with the I
	Setting Up Link for Cadence Incisive Software for Use with the I

	Getting Help with the Link for Cadence Incisive Software
	Documentation Overview
	Online Help
	Demos and Tutorials

	Coding a Link for Cadence Incisive MATLAB Application
	Overview
	Coding Entities or Modules for MATLAB Verification
	Overview of Steps for Coding Entities or Modules
	Choosing an Entity or Module Name
	Specifying Port/Signal and Module Paths
	Specifying Ports for the Entity or Module
	Specifying Port Direction Modes
	Specifying Port Data Types
	Port Data Types for VHDL Entities
	Port Data Types for Verilog Modules

	Sample VHDL Entity Definition

	Compiling the HDL Model
	Coding a MATLAB Test Bench Function
	Overview of the Steps for Coding a MATLAB Test Bench Function
	Data Type Conversions
	VHDL Data Type Conversions
	Verilog Data Type Conversions

	Naming a MATLAB Test Bench Function
	Passing Parameters to and from the MATLAB Function
	Gaining Access to and Applying Port Information
	Converting Data for Manipulation
	Converting Data for Return to the HDL Simulator
	Sample MATLAB Test Bench Function

	Coding a MATLAB Component Function
	Function Definition and Parameters

	Placing a MATLAB Test Bench or Component Function on the MATLAB

	Starting and Controlling MATLAB Link Sessions
	Overview
	Checking the MATLAB Server's Link Status
	Starting the MATLAB Server
	Starting the HDL Simulator for Use with MATLAB
	Deciding on MATLAB Link Session Scheduling Options
	Controlling Callback Timing from a MATLAB Test Bench or Componen
	Initializing the HDL Simulator for a MATLAB Link Session
	Applying Stimuli with the HDL Simulator force Command
	Running and Monitoring a MATLAB Link Session
	Stopping a MATLAB Link Session

	Modeling and Verifying an HDL Design with Simulink
	Overview
	Creating a Hardware Model Design in Simulink
	Handling Signal Values Across Simulators
	How Simulink Drives Cosimulation Signals
	Representation of Simulation Time
	Defining the Simulink and HDL Simulator Timing Relationship
	Relative Timing Mode
	Absolute Timing Mode
	Timing Mode Usage Restrictions
	Setting HDL Cosimulation Block Port Sample Times

	Handling Multirate Signals
	Clock Signal Latency
	Block Simulation Latency

	Configuring Simulink for HDL Models
	Adding the HDL Representation of a Model Component into a Simuli
	Configuring an HDL Cosimulation Block
	What Are Your HDL Cosimulation Block Requirements?
	Opening the Block Parameters Dialog Box
	Mapping HDL Signals to Block Ports
	Entering Signal Information Manually
	Obtaining Signal Information Automatically from the Incisive Sim

	Specifying Data Types for Output Ports
	Configuring the Simulink and Incisive Simulator Timing Relations
	Specifying a Relative Timing Relationship
	Specifying an Absolute Timing Relationship

	Configuring the Communication Link
	Creating Optional Clocks
	Executing Tcl Commands Before and After Cosimulation
	Specifying Pre- and Post-Simulation Tcl Commands with HDL Cosimu
	Specifying Pre- and Post-Simulation Tcl Commands with Simulink C

	Applying Your Block Parameters Configuration Settings

	Running and Testing a Cosimulation Model in Simulink
	Using Frame-Based Processing in Cosimulation
	Overview
	Using Frame-Based Processing
	Requirements and Restrictions for Using Frame-Based Signals

	Using a Value Change Dump File for Design Verification
	Generating a VCD File
	VCD File Format

	MATLAB Functions — Alphabetical List
	HDL Simulator Tcl Commands — Alphabetical List
	Simulink Blocks — Alphabetical List
	Index

	tables
	Environment Requirements Checklist
	VHDL-to-MATLAB Data Type Conversions
	Verilog-to-MATLAB Data Type Conversions
	HDL Port Information
	Required Data Conversions
	VHDL Conversions for the Incisive Simulator
	Verilog Conversions for the Incisive Simulator
	VHDL Example Port Definitions
	Time Representations for tnext Parameter
	Simulation Scheduling Options
	HDL Cosimulation Block Requirements Checklist
	Examples of Generated VCD File Format

